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1 basis

In dit bestand wordt de meetkunde van bij de open vragen zo goed mogelijk uitgelegd met
enkel de mooie kant van het projectief-synthetisch deel.

De basis bestaat uit:

• isometrieen zoals homotheties, verschuivingen, verdraaiingen

• angle-chasing

• constructie van interessante punten die helpen het probleem op te lossen

• gelijkvormigheid en congruentie

• de eigenschappen van koordenvierhoeken en omtrekshoeken: omtrekshoeken op een-
zelfde boog zijn gelijk en dus ook de hoeken op dezelfde zijde binnen een koordenvier-
hoek, wiens overstaande hoeken een som van 180 graden heeft.

• vectoren.

herh. basiskennis

Een driehoek 4ABC is gelijkbenig met |AB| = |AC| als en slechts als de twee hoeken
(”basishoeken”) B en C gelijk zijn.

In gelijkvormige driehoeken 4ABC en4XY Z zijn de overeenkomstige hoeken gelijk en de
overeenkomstige zijden hebben een constante verhouding (”de zijden zijn evenredig”). I.e.A =
X,B = Y,C = Z, AB

XY = BC
Y Z = CA

ZX . Notatie ABC ∼ XY Z

Twee driehoeken4ABC en4XY Z zijn congruent (gelijkvormig en de overeenkomstige zijden
zijn even lang) als een van de volgende voldaan is (”congruentiekenmerken”) * Alle overeen-
komstige zijden even lang zijn (”ZZZ”) * Twee overeenkomstige zijden even lang zijn, en
de ingesloten hoeken gelijk zijn (”ZHZ”) * Twee overeenkomstige hoeken gelijk zijn, en n
overeenkomstig paar zijden even lang is (”HZH ën ”ZHH”)

Voor gelijkvomigheid is het voldoende dat de verhouding van de zijden gelijk is ( ZHH wordt
dan HH)

Stelling van Pythagoras: in een rechthoekige driehoek met rechte hoek A geldt |AB|2 +
|AC|2 = |BC|2.

Als twee driehoeken een gemeenschappelijke top hebben, en een basis met dezelfde drager
(de drager van een lijnstuk AB is de rechte AB), dan verhouden hun oppervlakten zich als
de lengten van hun basissen. Dus: voor driehoeken ABC en ADE, met B,C,D,E colineair
(op dezelfde rechte) geldt [ABC]/[ADE] = BC/DE. Dit volgt onmiddellijk uit öppervlakte
driehoek = basis * hoogte / 2”. Hierbij staat [ABC] voor de oppervlakte van de driehoek
ABC.
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Nog wat naamkennis herhalen:

* De zwaartelijnen van een driehoek (uit een hoekpunt naar het midden van de overstaande
zijde) snijden elkaar in n punt, het zwaartepunt Z van de driehoek, in de theorie staat er G

* De hoogtelijnen van een driehoek (uit een hoekpunt loodrecht op de overstaande zijde)
snijden elkaar in n punt, het hoogtepunt H van de driehoek.

* De middelloodlijnen van een driehoek (de middelloodlijnen van de zijden) snijden elkaar in
n punt, het omcentrum O van de driehoek.

* De bissectrices van een driehoek (de bissectrices van de hoeken) snijden elkaar in n punt,
het incentrum I van de driehoek.

* het centrum van de negenpuntscirkel wordt met E aangeduid bij de 3 blz. met theorie, dit
is het middelpunt van de cirkel door o.a. de middens van de zijden van de driehoek

eig. Vliegers:

*2 paar aangrenzende zijden zijn even lang en *De diagonalen van een vlieger staan loodrecht
op elkaar.

basiseigenschappen over koordenvierhoeken:

*de overstaande hoeken zijn supplementair

*omtrekshoeken op een gelijke boog zijn gelijk, met een waarde die de helft is van de middel-
puntshoek op de boog.

Op volgende tekening zien we dus duidelijk dat ∠CBF = ∠CDB = ∠CEB = 0.5∠CAB met
die eigenschappen.
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De bissectricestelling

Een eigenschap van de bissectrices van een driehoek ABC die in talloze problemen als een
zeer fundamentele stelling opduikt is de volgende:

De binnen- en buitenbissectrice van hoek α snijdt BC in D en E respectievelijk.
Er geldt dat

AB

AC
=
BD

CD
=
BE

CE

(Bewijs als oefening)

De apoloniuscirkel

Interessant om verder mee te gaan, is de apoloniuscirkel:

Stelling 1.1. (De cirkel van Apollonius)

Zij [AB] een lijnstuk en k een positief reel getal ongelijk aan 1. De meetkundige plaats van

alle punten P waarvoor geldt |PA|
|PB| = k is een cirkel met middelpunt op de rechte AB.

opmerking: indien k = 1 is de meetkundige plaats de middelloodlijn van het lijnstuk

bewijs

Stel dat we 1 punt Q hebben dat niet op de rechte AB ligt, hebben die voldoet aan de
voorwaarde, door de bissectricestelling weten we dat de snijpunten van binnen- en buitenbis-
sectrice van 4AQB met de rechte AB ook voldoen aan de voorwaarde. Indien C,D die 2
snijpunten zijn, is de cirkel van Apolonius de cirkel met diameter [CD]. Nu kan er ook worden
bewezen dat voor ieder punt P op die cirkel de verhouding blijft kloppen. ( zij D het punt
niet tussen A en B, neem de projecties X,Y op DP en werk met gelijkvormige driehoeken)

Stelling 1.2. (De vlinderstelling) Laat M het midden zijn van een koorde PQ van een cirkel
en AB en CD twee andere koorden door M. Noem X het snijpunt zijn van AD en PQ en Y
van BC en PQ. Dan is M het midden van XY .

Het bewijs is al een uitdaging op zich, de stelling helpt bij vragen zoals bvb.

Voorbeeld 1.3. BaMO 2008/1

Gegeven een scherphoekige driehoek ABC met |AC| > |BC| en F als voetpunt van C op [AB].
Laat P een punt zijn op AB, 6= A zodat |AF | = |PF |. Zij H,O,M het hoogtepunt,omcentrum
en midden van [AC]. Zij X het snijpunt van BC en HP en Y ’t snijpunt van OM en FX,
laat OF snijden met AC in Z. Bewijs dat F,M, Y, Z een koordenvierhoek vormen.
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Figuur 1: De bissectricestelling

Macht van een punt

Wanneer we een punt P en een cirkel ω met middelpunt O en straal R beschouwen, en we
tekenen een willekeurige rechte door P die ω snijdt in A en B, dan merken we op dat de
grootte van |PA| . |PB| onafhankelijk is van de gekozen rechte. (Bewijs dit) We definiëren de
macht van P t.o.v. ω als

• − |PA| . |PB| als P binnen de cirkel ligt.

• 0 als P op de cirkel ligt.

• |PA| . |PB| als P buiten de cirkel ligt.

Toon nu aan dat de macht van P t.o.v. ω ook gegeven wordt door |OP |2 − R2. Nu wordt
de betekenis van het minteken in de definitie van de macht van P t.o.v. ω duidelijk, ze was
nodig om de zonet gegeven uitdrukking steeds te doen kloppen.

Machtlijn

Figuur 2: De machtlijn

Wanneer er twee cirkels in het spel zijn zouden we ons kunnen afvragen wat de meetkundige
plaats is van alle punten P die t.o.v. beide cirkels dezelfde macht hebben. Beschouw daartoe
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twee cirkels ω1, ω2 met straal r1, r2 en middelpunt O1, O2. Zij P een punt dat gelijke macht
ten opzichte van beide cirkels heeft, en noem H de projectie van P op O1O2. Volgende
gelijkheden zijn nu equivalent:

|O1P |2 − r21 = |O2P |2 − r22
|O1H|2 + |HP |2 − r21 = |O2H|2 + |HP |2 − r22

|O1H|2 − r21 = (|O2O1| − |HO1|)2 − r22
2 · |HO1| · |O2O1| = |O2O1|2 + r21 − r22

Merk op dat de onderste vergelijking enkel afhankelijk is van de positie van H. Het punt P
zal met andere woorden dan en slechts dan een gelijke macht hebben t.o.v. beide cirkels als
H dat ook heeft. Wanneer |O1O2| 6= 0 is de laatste vergelijking een eerstegraadsvergelijking
die een unieke H oplevert (Merk op dat we met geöriënteerde lengtes werken). Bijgevolg is
de meetkundige plaats die we zochten een rechte loodrecht op O1O2. Deze rechte wordt ook
wel de machtlijn van beide cirkels genoemd.

Merk op dat we eenvoudig de machtlijn van twee snijdende cirkels kunnen terugvinden als de
rechte door beide snijpunten (of de gemeenschappelijk raaklijn indien de cirkels raken in een
punt). Ga na waarom dat zo is.

Machtpunt

Wanneer we drie cirkels beschouwen, dan kunnen we voor elk paar cirkels de machtlijn gaan
beschouwen. Bewijs nu zelf de volgende stelling:

Gegeven zijn drie cirkels ω1, ω2 en ω3. De drie machtlijnen die we krijgen door telkens twee
verschillende cirkels uit de gegeven drie cirkels te beschouwen zijn concurrent.

Het punt van concurrentie van deze 3 machtlijnen wordt vaak het machtpunt van de drie
cirkels genoemd.

Essentiële lemmata

In deze paragraaf bekijken we enkele lemma’s van dichterbij die ongewoon vaak hun intrede
deden in IMO-problemen de voorbije jaren. Waar Lemma 1 misschien ook als fundamen-
tele stelling bestempeld zou kunnen worden, zijn Lemma 2 en vooral Lemma 3 ongemeen
belangrijk voor elke IMO-deelnemer.

Lemma 1 (Raakomtrekshoek) Beschouw een cirkel ω die de punten A en B bevat. De
raaklijn aan ω in A sluit een hoek in met AB die in grootte gelijk is aan een van beide om-
trekshoeken op AB in ω.

(Bewijs als oefening)
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Figuur 3: De raakomtrekshoek

Lemma 2 De reflecties van het hoogtepunt H van ABC ten opzichte van de zijden liggen op
de omgeschreven cirkel van ABC.

Het bewijs van dit lemma is eenvoudig en kan als oefening dienen voor de lezer.

Figuur 4: Lemma 2

Lemma 3 In driehoek ABC noemen we I het middelpunt van de ingeschreven cirkel, en Ia
het middelpunt van de aangeschreven cirkel tegenover A.

• De binnen(resp. buiten)bissectrice van A snijdt de middelloodlijn van BC in het punt
D (resp. het punt E) op de omgeschreven cirkel.

• De cirkel met diameter IIa bevat B en C en heeft D als middelpunt.

Dit lemma is allicht het belangrijkste uit deze hele paragraaf, en een van de vaakst terugke-
rende lemmata in oplossingen van IMO-problemen. Het bewijs is een goede oefening.
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Figuur 5: Lemma 3

Voetpuntsdriehoeken

Wanneer je in een probleem een punt binnen een driehoek ontmoet, kan het vaak nuttig zijn
om de zogenaamde voetpuntsdriehoek te beschouwen. De voetpuntsdriehoek van een punt P
in een driehoek ABC is per definitie de driehoek gevormd door de loodrechte projecties van
P op de zijden van ABC. Zo zullen bijvoorbeeld de middens van de zijden van ABC de
hoekpunten van de voetpuntsdriehoek van O zijn. De voetpuntsdriehoek heeft enkele eigen-
schappen die af en toe tot een zeer korte oplossing van een probleem kunnen leiden.

Eigenschappen In ∆ABC tekent men de voetpuntsdriehoek DEF van P . Er geldt dat

• ∠EDF = ∠CPB − ∠CAB

• |DE| = |CP | · sinC

• Opp(DEF) =
1

4

∣∣∣∣∣1−
|OP |2
R2

∣∣∣∣∣ · Opp(ABC).

Essentieel bestaat het bewijs van de eerste twee eigenschappen uit het optellen van hoeken
en het gebruiken van de sinusregel. De derde eigenschap is minder eenvoudig en verdient
speciale aandacht. We geven eerst een bewijs:

Noem Q het tweede snijpunt van AP en de omgeschreven cirkel van ABC. We merken op dat
BDPF en AEPF koordenvierhoeken zijn, en dus vinden we dat ∠EFD = ∠EFP+∠PFD =
∠EAP + ∠PBD = ∠CBQ + ∠PBC = ∠PBQ. Voor de oppervlakte van DEF vinden we
ten slotte:

2 ·Opp(DEF ) = |EF | · |DF | . sinEFD
= |AP | · |BP | · sinA · sinB · sinPBQ
= |AP | · |PQ| · sinA · sinB · sinPQB
= |

(
|OP |2 −R2

)
| · sinA · sinB · sinC

Hieruit volgt het gestelde.
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Figuur 6: De voetpuntsdriehoek

De rechte van Simson

Drie punten zijn collineair als en slechts als de driehoek gevormd door deze drie punten een
oppervlakte heeft die nul is. Ga nu zelf met behulp van eigenschap 3 uit de vorige paragraaf
de volgende stelling na:

De projecties van een punt P op de zijden van ABC zijn dan en slechts dan collineair als P
op de omgeschreven cirkel van ABC ligt.

De rechte die de drie projecties van het punt P bevat noemt men de rechte van Simson
van punt P t.o.v. ABC.

Deze stelling zal je soms van pas komen wanneer je een probleem te lijf gaat. Tracht ook als
oefening eens een rechtstreeks bewijs te vinden, dus zonder de uitdrukking voor de oppervlakte
van een voetpuntsdriehoek te gebruiken.
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Deze dingen worden uitgelegd in volgende bestand, gevolgd door een vervollediging van de
goniometrische eigenschappen

11



1 Techniques

Geometry is unlike many of the other areas of olympiad mathematics, requiring more
intuition and less algebra. Nevertheless, it is important to do the basic groundwork as
otherwise your intuition has nothing with which to work.

Here are some suggestions on ways to approach a geometry problem.
� Draw a quick diagram so that you can visualise the problem.

� Draw a neat and accurate diagram — this will often reveal additional facts
which you could then try to prove.

� Draw a deliberately incorrect diagram (this could be your initial diagram), so
that you don’t accidentally assume the result because you referred to your ac-
curate diagram (this is particularly important if you are proving concurrency or
collinearity).

� It is very important to do as much investigation as you can. Try to relate as
many angles and line segments as you can, even if you have several variables.
Then look for similar or congruent triangles, parallel lines and so on. This on
its own can be enough to solve some easier problems without even having to
think.

� There are many approaches to attack geometry problems e.g. Euclidean geom-
etry, coordinate geometry, complex numbers, vectors and trigonometry. Think
about applying all the ones that you know to the problem and deciding which
ones are most likely to work. Be guided by what you are asked to prove: for
example, if you are asked to prove that two lines are parallel then coordinate
geometry might work well, but if the problem involves lots of related angles
then trigonometry may be a better approach.

� Don’t be afraid to get your hands dirty with trigonometry, coordinate geometry
or algebra. While such solutions might not be as “cool” as solutions that require
an inspired construction, they are often easier to find and score the same num-
ber of points. However, doing as much as possible with Euclidean geometry
first can make the equations simpler.

� Look for constructions that will give you similar triangles, special angles or
allow you to restate the problem in a simpler way. For example, if you are asked
to prove something about the sum of two lengths, try making a construction
that places the two lengths end to end so that you only have to prove something
about the length of a single line.

1

� Assume that the result is true, and see what follows from this. This may lead
you to intermediate results which you can then try to prove.

� Always check that you haven’t omitted any cases such as obtuse angles or
constructions that are impossible in certain cases (for example, you can’t take
the intersection point of two lines if they are parallel). This booklet does a
terrible job of this, because the special cases are almost always trivial. I’m
lazy, the duplication costs of this booklet are high, the rainforests are dying,
and this is not a competition. In a competition, you can expect to lose marks if
your proof does not work in all cases.

2 Terminology and notation

There is some basic terminology for things that share some property. Concurrent lines
pass through a common point, and collinear points lie on a common line. Concyclic
points lie on a common circle; note that “A, B, C and D are concyclic” does not have
the same meaning as “ABCD is a cyclic quadrilateral”, since the latter implies that the
points lie in a particular order around the circle. Concentric circles have a common
centre.

The humble triangle has possibly the richest terminology and notation. There are
numerous “centres”, generally the point of concurrency of certain lines, and a few
have corresponding circles.

incentre The centre of the incircle (inscribed circle); the point of concurrency of the
internal angle bisectors

circumcentre The centre of the circumcircle (circumscribed circle); the point of con-
currency of the perpendicular bisectors

excircle The centre of an excircle (escribed circle); the point of concurrency of two
external and one internal angle bisector

orthocentre The point of concurrency of the altitudes

centroid The point of concurrency of the medians (lines from a vertex to the mid-
point of the opposite side)

Most of these terms should be familiar from high-school geometry. An unfamiliar
term is a cevian: this is any line joining a vertex to the opposite side.
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For this booklet (particularly section 6), we also introduce a lot of notation for
triangles. Some of this is standard or mostly standard while some is not; you are
advised to define any of these quantities in proofs, particularly K, x, y and z.

R

r

x

y

ha
b

γ

�
H

�A

�
B

�
C

�
I

� O� G

I the incentre

IA the excentre opposite A

O the circumcentre

G the centroid

H the orthocentre

a the side opposite vertex A (similarly for B and C)

s the semiperimeter, a
�
b

�
c

2

x the tangent from A to the incircle,
� a

�
b

�
c

2
� s � a (similarly for y and z)

R the radius of the circumcircle (circumradius)

r the radius of the incircle (inradius)

3

ra the radius of the excircle opposite A

ha the height of the altitude from A to BC

α the angle at A (similarly for β and γ)

K the area of the triangle

We also use the notation
� �

ABC
�
(or just

�
ABC

�
) to indicate the area of

�
ABC.

3 Directed angles, line segments and area

In classical geometry, most quantities are undirected. That means that if you measure
them in the opposite direction, they have the same value (AB � BA,

�
ABC � �

CBA,
and

� �
ABC

�
�

� �
CBA

�
). Most of the time this is a reasonable way of doing things.

However, it occasionally has disadvantages. For example, if you know that A, B and
C are collinear, and AB � 5, BC � 3, then what is AC? It could be either 2 or 8,
depending on which way round they are on the line. The same problem arises when
adding angles or areas.

�

A
�

B
�

C

�

A
�

B
�

C

Normally these situations are not important, because it is clear from a diagram
which is correct. However, sometimes there are many different ways to draw the
diagram, leading to a proof with many different cases. Another way to solve the
problem is to treat the quantities as having a sign, indicating the direction. So now
if you are told that AB � 5, BC � 3 then you can be sure that AC � AB

�
BC � 8.

This is because both have the same sign, and hence are in the same direction. If C
lay between A and B, then AB � 5, BC � � 3 and so AC � AB

�
BC � 2. It could

also be that AB � � 5, BC � 3; the positive direction is generally arbitrary but must
be consistent. What is important is that no matter in what order A, B and C lie, the
equation AC � AB

�
BC holds.

Directed line segments have somewhat limited use, because it only makes sense
to compare lines that are parallel. Generally they are used when dealing with ratios
or products of collinear line segments (see Menelaus’ Theorem (6.3), for example).
Directed angles and directed area are more often used.

A directed angle
�
ABC is really a measure of the angle between the two lines AB

and BC. Conventionally, it is the amount by which AB must be rotated anti-clockwise
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to line up with BC. One effect of this is that while normal angles have a range of 360
�
,

directed angles only have a range of 180
�
! This is because rotating a line by 180

�

leaves it back where it started, so 180
�
is equivalent to 0

�
. To indicate this, equivalent

angles are sometimes written
�
ABC � �

DEF rather than
�
ABC � �

DEF . This
limitation occasionally has disadvantages, and in particular it is not generally possible
to combine trigonometry with directed angles (since the sin and cos functions only
repeat every 360

�
). This is made up for by the special properties that directed angles

do have:

1.
�
AMC � �

AMB
� �

BMC;

2.
�
AXY � �

AXZ iff X � Y � Z are collinear

3.
�
XY Z � 0

�
iff X � Y � Z are collinear

4.
�
ABC

� �
BCA

� �
CAB � 0;

5.
�
PQS � �

PRS iff P � Q � R and S are concyclic.

Property 1 is simply the basis of directedness: the relative positions don’t matter.
Property 2 is trivial if Y and Z lie on the same side of X , and the fact that adjacent
angles add up to 180

�
if not. Property 3 just restates the fact that rotating a line onto

itself leads to no rotation. Property 4 is the result that angles in a triangle add up to
180

�
, but also brings in the fact that the three angles are either all clockwise or all

anti-clockwise. Property 5 is the really interesting one: it is simultaneously the same
segment theorem and the alternate segment theorem, depending on the ordering of
the points on the circle. The problem below illustrates why having a single theorem
can be so important.

Directed areas are used even less often than directed angles and line segments,
but are sometimes useful when adding areas to compute the area of a more complex
shape. Conventionally, a triangle ABC has positive area if A, B and C are arranged in
anti-clockwise order, and negative if they are arranged in clockwise order.

Exercise 3.1. Three circles, Γ1, Γ2 and Γ3 intersect at a common point O. Γ1 and Γ2
intersect again at X, Γ2 and Γ3 intersect again at Y , and Γ3 and Γ1 intersect against
at Z. A is a point on Γ1 which does not lie on Γ2 or Γ3. AX intersects Γ2 again at B,
and BY intersects Γ3 again at C. Prove that A, Z and C are collinear.

Exercise 3.2 (Simpson Line). Perpendiculars are dropped from a point P to the
sides of

�
ABC to meet BC � CA � AB at D � E � F respectively. Show that D, E and F are

collinear if and only if P lies on the circumcircle of
�
ABC.
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You will find that directed angles in particular play a large role in the theorems in
this book, and they are introduced early on for this purpose. Do not be led to believe
that directed angles are so wonderful that they should be used for all problems: theo-
rems try to make very general statements and use directed angles for generality, but
most problems are constrained so that normal angles are adequate (e.g. points inside
triangles or acute angles). Normal angles are easier to work with simply because one
does not need to think about whether to write

�
ABC or

�
CBA.

4 Trigonometry

Trigonometry is seldom required to solve a problem. After all, trigonometry is really
just a way of reasoning about similar triangles. However, it is a very powerful rea-
soning tool, and if applied correctly can replace a page full of unlikely and ungainly
constructions with a few lines of algebra. If applied incorrectly, however, it can have
the opposite effect.

The first thing to do before applying any trigonometry is to reduce the number
of variables to the minimum. Then choose the variables that you want to keep very
carefully. The compound angle formulae below make it easy to expand out many
trig expressions, but if you have chosen the wrong variables to start with the task is
almost impossible.

The following angle formulae are invaluable in manipulating trigonometric ex-
pressions. In the formulae below, a � indicates a sign that is opposite to the sign
chosen in a

�
.

sin
�
A

�
B

�
� sinAcosB

�
cosAsinB (4.1)

cos
�
A

�
B

�
� cosAcosB � sinAsinB (4.2)

tan
�
A

�
B

�
� tanA

�
tanB

1 � tanA tanB
(4.3)

cot
�
A

�
B

�
� cotAcotB � 1

cotA
�
cotB

(4.4)

sinAsinB �
�
cos

�
A � B

�
� cos

�
A

�
B

�� 	
2 (4.5)

sinAcosB �
�
sin

�
A � B

� �
sin

�
A

�
B

�� 	
2 (4.6)

cosAcosB �
�
cos

�
A � B

� �
cos

�
A

�
B

�� 	
2 (4.7)

sinA
�
sinB � 2sin



A

�
B

2

�

cos



A � B

2

�

(4.8)

cosA
�
cosB � 2cos



A

�
B

2

�

cos



A � B

2

�

(4.9)

6



cosA � cosB � 2sin



B

�
A

2

�

sin



B � A

2

�

(4.10)

You don’t need to memorise any of these other than the first three, because all the
others can be obtained from these with simple substitutions. You should be aware
that these transformations exist and know how to derive them, so that you can do so
in an olympiad if necessary (see the exercises).

You can also use these to derive other formulae; for example, you can calculate
sinnθ and cosnθ in terms of sinθ and cosθ fairly easily (for small, known values of
n).

Exercise 4.1. Prove equations (4.4) to (4.10).

Exercise 4.2. In a
�
ABC (which is not right-angled), prove that

tanA
�
tanB

�
tanC � tanA tanB tanC �

4.1 The extended sine rule

The standard Sine Rule says that

a
sinα

� b
sinβ

� c
sinγ

�

Theorem 4.1 (Extended Sine Rule). In a triangle ABC,

a
sinα

� b
sinβ

� c
sinγ

� 2R �

where R is the radius of the circumcircle.

Proof. Construct point D diametrically opposite B in the circumcircle of
�
ABC.

Then α � �
CDB or 180

�
�

�
CDB and

�
BCD � 90

�
. It follows that a

sinα
� BC
BC

�

BD
�

2R, and similarly for b
sinβ and c

sinγ .

�
A

�
B

�C

�D

�

7

Exercise 4.3. In a circle with centre O, AB and CD are diameters. From a point
P on the circumference, perpendiculars PQ and PR are dropped onto AB and CD
respectively. Prove that the length of QR is independent of the position of P.

5 Circles

5.1 Cyclic quadrilaterals

A cyclic quadrilateral is a quadrilateral that can be inscribed in a circle. There are
several results related to the angles of a cyclic quadrilateral that are covered in high
school mathematics and which will not be repeated here. These results are still very
important, and cyclic quadrilaterals appear in many unexpected places in olympiad
problems.

Exercise 5.1 ( �). Let
�
ABC have orthocentre H and let P be a point on its circum-

circle. Let E be the foot of the altitude BH, let PAQB and PARC be parallelograms,
and let AQ meet HR in X.

(a) Show that H is the orthocentre of
�
AQR.

(b) Hence, or otherwise, show that EX is parallel to AP.

A result that is not normally taught in school is Ptolemy’s Theorem. It is mainly
useful if you have only one or two cyclic quadrilaterals, and lengths play a major role
in the problem. It is also very useful when some more is known about the lengths.
Equal lengths are particularly helpful as they can divide out of the equation.

Theorem 5.1 (Ptolemy’s Theorem). If ABCD is a cyclic quadrilateral, then

AB � CD
�
BC � AD � AC � BD

Proof.

8



�A

� B

�
C

�D

�
B
�

�

C
�

�
D
�

Choose an arbitrary constant K and construct B
�

, C
�

and D
�

on AB, AC and AD respec-
tively such that AB � AB

�
� AC � AC

�
� AD � AD

�
� K.

Now consider
�
ABC and

�
AC

�

B
�

. The angle at A is common and AB
AC

� � K
�

AB
�

K
�

AC
�

AC
AB

� and therefore the triangles are similar. It follows similarly that
�
ABD

� � � �
AD

�

B
�

and
�
ACD

� � � �
AD

�

C
�

. Hence
�
B

�

C
�

D
�

� �
ABC

� �
ADC � 180

�
i.e. B

�

C
�

D
�

is a
straight line. From the similar triangles, we have BC � B

�

C
�

� AB
AC

� � B
�
C
��
� AB� AC
K , and

similarly for CD and BD. Therefore

AC � BD � B
�
D
�

K

�
AB � AC � AD

�

�
� B

�
C
�

K
� C

�
D
�

K

� �
AB � AC � AD

�

� AB � CD
�
AD � BC

This result relies on the fact that B
�

C
�

D
�

is a straight line. If we had used a non-
cyclic quadrilateral, this would not have been the case. This shows that the converse
of Ptolemy’s Theorem is also true. In fact the triangle inequality in

�
B

�

C
�

D
�

leads to
Ptolemy’s Inequality, which says that AC � BD

�
AB � CD

�
AD � BC for any quadrilat-

eral ABCD, with equality precisely for cyclic quadrilaterals.

Exercise 5.2. Triangle ABC is equilateral. For any point P, show that AP
�
BP

�
CP

and determine when equality occurs.

5.2 The Simpson line

The Simpson line was covered as exercise 3.2, but to emphasise its importance the
statement is repeated here. A handy corollary is that the feet of perpendiculars from
a point on the circumcircle cannot all meet the sides internally — which can limit the
number of cases you need to consider.

9

Theorem 5.2 (The Simpson line). Perpendiculars are dropped from a point P to the
sides of

�
ABC to meet BC � CA � AB at D � E � F respectively. Show that D, E and F are

collinear if and only if P lies on the circumcircle of
�
ABC.

This was exercise 3.2, so no proof is provided here.

Exercise 5.3. From a point E on a median AD of
�
ABC the perpendicular EF is

dropped to BC, and a point P is chosen on EF. Then perpendiculars PM and PN are
drawn to the sides AB and AC.

Now, it is most unlikely that M, E and N will lie in a straight line, but in the event
that they do, prove that AP bisects

�
A.

5.3 Power of a point

This section is based on the fact that if chords AB and CD of a circle intersect at a
point P, then PA � PB � PC � PD (even if P lies outside the circle). This is easily shown
using similar triangles.

Consider fixing a point P and circle Γ and considering all possible chords AB that
pass through P. Since PA � PB is equal for every pair of chords AB, it is equal for
all such chords. This value is said to be the power of P with respect to Γ. The line
segments are considered to be directed (see section 3), so P is negative inside the
circle and positive outside of it. In fact by considering the chord that passes through
O, the centre of Γ, it can be seen that the power of P is d2 � r2, where d � OP and
r is the radius of Γ. If P lies outside the circle then this also equals the square of the
length of the tangent from P to Γ.

It is sometimes useful to know that the converse of the above result is true i.e. if
PA � PB � PC � PD, where AB and CD pass through P, then A, B, C and D are concyclic
(but only if using directed line segments).

5.3.1 The radical axis

Consider having two circles instead of one. What is the set of points which have the
same power with respect to both circles? If the circles are concentric then no point
will have the same power (since d will be the same and r different for every point),
but the situation is less clear in general.

10



�O1
�O2

�P

�

H
Γ1 Γ2

Consider two circles Γ1 and Γ2 with centres O1 and O2 with radii r1 and r2 respec-
tively. Let P be a point which has equal powers with respect to Γ1 and Γ2, and let H
be the foot of the perpendicular from P onto O1O2. Then

O1P2 � r2
1

� O2P2 � r2
2 (5.1)

�� O1H2 �
HP2 � r2

1
� O2H2 �

HP2 � r2
2 (5.2)

�� O1H2 � r2
1

� O2H2 � r2
2 (5.3)

�� O1H2 � r2
1

�
�
O2O1

� HO1
� 2 � r2

2 (5.4)
�� 2 � HO1

� O2O1
� O2O1

2 �
r2

1
� r2

2 (5.5)

We have eliminated P from the equation! In fact (5.3) shows that P has equal powers
with respect to the circles iff H does. If O1O2

� � 0 then we have a linear equation
in HO1 and so there is exactly one possibility for H (we are using directed line seg-
ments, so HO1 uniquely determines H). Thus the locus of P is the line through H
perpendicular to O1O2. This line is known as the radical axis of Γ1 and Γ2.

If the two circles intersect, the radical axis is easy to construct. The points of
intersection both have zero power with respect to both circles, so both points lie on
the radical axis. So the radical axis is simply the line through them.

Exercise 5.4. Two circles are given. They do not intersect and neither lies inside the
other. Show that the midpoints of the four common tangents are collinear.

5.3.2 Radical centre

What happens when we consider three circles (say Γ1, Γ2 and Γ3) instead of two?
Firstly consider the case where the centres are not collinear. Then the radical axis of
Γ1 and Γ2 will meet the radical axis of Γ2 and Γ3 at some point, say X (they will not
be parallel because a radical axis is perpendicular to the line between the centres of
the circles). Then from the definition of a radical axis, X has the same power with
respect to all three circles and so it also lies on the radical axis of Γ1 and Γ2. The fact

11

that the three radical axes are concurrent at a point (known as the radical centre) can
be used to solve concurrency problems.

If, however, the three centres are collinear, then all three radical axes are parallel.
If they all coincide then all points on the common axis have equals powers with
respect to the three circles; if not then no points do.

Exercise 5.5. Show how to construct, using ruler and compass, the radical axis of
two non-intersecting circles.

Exercise 5.6 ( �). Let A, B, C and D be four distinct points on a line, in that order.
The circles with diameters AC and BD intersect at the points X and Y . The line XY
meets BC at the point Z. Let P be a point on the line XY different from Z. The line
CP intersects the circle with diameter AC at the points C and M, and the line BP
intersects the circle with diameter BD at the points B and N. Prove that the lines AM,
DN and XY are concurrent.

6 Triangles

6.1 Introduction

A triangle would seem to be almost the simplest possible object in geometry, second
only to the circle. It has only has two true degrees of freedom, since scaling a tri-
angle up or down does not affect its properties. Yet the humble triangle contains an
enormous amount of mathematics — in fact too much to fully explore here.

6.2 Tangents to the incircle

Let the lengths of the tangents to the incircle from A, B and C be x, y and z. Since
a � y

�
z, b � z

�
x and c � x

�
y, we can solve for x, y and z and get

x �
� a

�
b

�
c

2
� y � a � b

�
c

2
� z � a

�
b � c
2

�

This is the same notation that is introducted in section 2.

Exercise 6.1. Determine the lengths of the tangents from B and C to the excircle
opposite A.

12



6.3 Triangles within triangles

There are specific names given to certain triangles formed from points of the original
triangle:

� The medial triangle has the midpoints of the original sides as its vertices.

� The orthic triangle has the feet of the altitudes as its vertices.

� A pedal triangle is the triangle formed by the feet of perpendiculars dropped
from some point onto the three sides. If the point is the orthocentre, then this
is the orthic triangle (and in fact some people use the term “pedal triangle” to
refer to the orthic triangle).

6.4 Points on the circumcircle

Apart from the vertices, there are a few other points that are known to lie on the
circumcircle. The first is the intersection point of a perpendicular bisector and the
corresponding angle bisector. This is easily shown by taking the intersection of the
perpendicular bisector and the circumcircle, which divides an arc (say BC) into two
equal parts which subtend equal angles at A. This is also true (although less well
known) in the case where the external angle bisector is used.

xx

xx

�A

�
B

�
C

�

D

�A

�
B

�
C

�Dx
x

xx

The second group of points that are known to lie on the circumcircle are the
reflections of H (the orthocentre) in each of the three sides. This is an exercise in
angle chasing, using the known results about the angles in cyclic quadrilaterals.
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x
x

x

�
A

�
B

�C

�

�

�

�

H
�

�H

Exercise 6.2. A rectangle HOMF has HO � 23 and OM � 7. Triangle ABC has
orthocentre H and circumcentre O. The midpoint of BC is M and F is the foot of the
altitude from A. Determine the length of side BC.

6.5 The nine-point circle

A rather interesting circle that arises in a triangle is the so-called nine-point circle.
Let us examine the circumcircle of the triangle whose vertices are the midpoints of

�
ABC (the medial triangle). Firstly, what is its radius? The medial triangle is a

half sized version of the original triangle (because of the midpoint theorem), so its
circumradius will also be half that of the large triangle, i.e. it will be R

2 .

�A

�

B
�

C
�

D

� E�F

�

P

�Q

�R

� H

� X

Now let us see what other points this circle passes through. From the diagram it
appears that it passes through the feet of the altitudes, so let us prove this. Since
F is the midpoint of the hypotenuse of

�
APB, we have

�
FPA � �

FAP � 90
�

� β.
Similarly

�
EPA � 90

�
� γ and so

�
FPE � α � �

FDE (since
�
ABC

� � � �
DEF). It

follows that P lies on the circle. Similarly Q and R also lie on the circle.
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Point X is the midpoint of HC, and it also appears to lie on the circle. HC is
the diameter of the circle passing through H, Q, C and P, so X is the centre of this
circle. It follows that

�
PXQ � 2

�
PCQ � 2γ. But

�
PEQ � �

PEF
� �

FEQ �
�
PDF

� �
FEQ � γ � γ, so

�
PEQ � �

PXQ and so X lies on the circle. Similarly
the midpoints of HA and HC lie on the circle.

Because there are nine well-defined points which lie on this circle, it is known as
the nine-point circle.

6.6 Another circle

Consider that
�
IABI � �

IACI � 90
�
; this shows that IIA is the diameter of a circle

passing through I, IA, B and C. Where is the centre of this circle? Well, any circle
passing through B and C must have its centre on the perpendicular bisector of BC,
and for IIA to be the diameter, the centre must also lie on the internal bisector of

�
A. Hence the centre is the intersection of these two lines. As shown above, the

intersection also lies on the circumcircle of
�
ABC.

�A

�
B

�
C

�
D

� I

�

IA

�

Exercise 6.3 ( �). In acute-angled triangle ABC the internal bisector of angle A meets
the circumcircle of the triangle again at A1. Points B1 and C1 are defined similarly.
Let A0 be the point of intersection of the line AA1 with the external bisectors of angles
B and C. Points B0 and C0 are defined similarly. Prove that

(i) the area of the triangle A0B0C0 is twice the area of the hexagon AC1BA1CB1;

(ii) the area of the triangle A0B0C0 is at least four times the area of the triangle
ABC.
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6.7 Theorems

Angle bisectors can be fairly tricky to deal with. The angle bisector theorem provides
a way to compute the segments which the base is divided into.

Theorem 6.1 (Angle bisector theorem). If D is the point of intersection of BC with
an angle bisector of

�
A, then DB

DC
� AB
AC .

Proof. Construct E on AD such that
�
AEC � �

BDA. Then
�
ABD

� � � �
ACE (two

angles) and so DB
EC

� AB
AC . But

�
ECD is isosceles, so CE � CD and therefore DB

DC
� AB
AC

as required.

�A

�

B
�

C
�

D

�E

�A

�

B
�

C
�

D

�E

Exercise 6.4. In the right-hand diagram for the angle-bisector theorem, find a for-
mula for the length BD in terms of the side lengths a, b and c.

Exercise 6.5. Given a line segment AB and a real number r � 0, find the locus of
points P such that AP

BP
� r.

The theorems of Ceva and Menelaus are handy results when proving concurrency
and collinearity respectively. They are particularly powerful because their converses
are true, provided that the directions are taken into account. The converses are quite
easy to prove by assuming them to be false, and then constructing two different points
with the same uniquely defining properties.

Theorem 6.2 (Ceva’s Theorem). If AD, BE and CF are concurrent cevians of
�
ABC

then
BD
DC

�

CE
EA

�

AF
FB

� 1

16



Proof.

�A

�

B
�

C
�

D

� E

�F

�G

Let G be the point of concurrency.

� �
ABD

�

� �
ACD

� � BD
DC

(common height)
� �

GBD
�

� �
GCD

� � BD
DC

(common height)

�

� �
AGB

�

� �
CGA

� � BD
DC

We can show similar things for CE
EA and AF

FC . Therefore

BD
DC

�

CE
EA

�

AF
FB

�

� �
AGB

�

� �
CGA

� �

� �
BGC

�

� �
AGB

� �

� �
CGA

�

� �
BGC

� � 1

This proof has not explicitly invoked directed areas or line-segments, but if they
are used it can be seen that the result will hold even if G lies outside of the triangle.

Theorem 6.3 (Menelaus’ Theorem). If X, Y and Z and collinear and lie on sides
BC, CA and AB (or their extensions) of

�
ABC respectively, then

AZ
ZB

�

BX
XC

�

CY
YA

� � 1

(Note that the sign on the result is due to directed line segments, and indicates that
the line cuts the sides themselves either twice or not at all.

Proof.

17

�A

�

B
�

C
�

X

�Y

�Z

�

A
�

�B
�

�C
�

Drop perpendiculars from A, B and C to meet XY Z at A
�

, B
�

and C
�

. From alternate
angles, we have

�
AA

�

Z
� � � �

BB
�

Z and thus AZ
ZB

� AA
�

B
�
B . Similarly BX

XC
� BB

�

C
�
C and CY

YA
�

CC
�

A
�
A . Therefore

AZ
ZB

�

BX
XC

�

CY
YA

� AA
�

B
�
B

�

BB
�

C
�
C

�

CC
�

A
�
A

� � 1

Exercise 6.6. Use Menelaus’ Theorem to prove Ceva’s Theorem.

Exercise 6.7 ( �). ABC is an isosceles triangle with AB � AC. Suppose that

(i) M is the midpoint of BC and O is the point on the line AM such that OB
�
AB;

(ii) Q is an arbitrary point on the segment BC different from B and C;

(iii) E lies on the line AB and F lies on the line AC such that E, Q and F are distinct
and collinear.

Prove that OQ is perpendicular to EF if and only if QE � QF.

Stewart’s Theorem is a handy tool for dealing with the length of a cevian, which
is otherwise difficult to work with.

Theorem 6.4 (Stewart’s Theorem). Suppose AD is a cevian in
�
ABC. Let p � AD,

m � BD and n � CD. Then

a
�
p2 �

mn
�

� b2m
�
c2n �

Proof.
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m n

pc

a

b

θ

�A

�

B
�

C
�

D

Use the cosine rule in
�
ABD:

c2 � m2 �
p2 � 2mpcosθ

� c2n � m2n
�
p2n � 2mnpcosθ (6.1)

Do the same in
�
ACD, noting that cos

�
180

�
� θ

�
� � cosθ:

b2 � n2 �
p2 �

2npcosθ
� b2m � n2m

�
p2m

�
2mnpcosθ (6.2)

Now add (6.1) and (6.2):

b2m
�
c2n � m2n

�
n2m

�
p2n

�
p2m (6.3)

�
�
m

�
n

� �
p2 �

mn
�

(6.4)
� a

�
p2 �

mn
�

(6.5)

In the special case that AD is a median, Stewart’s Theorem reduces to 4p2 �
a2 �

2
�
b2 �

c2 �
, which is known as Apollonius’ Theorem.

Exercise 6.8. In
�
ABC, angle A is twice angle B. Prove that a2 � b

�
b

�
c

�
.

Theorem 6.5 (Euler’s Formula).

OI2 � R
�
R � 2r

�

As a corollary, we have Euler’s Inequality:

R
�
2r �

19

Proof. Extend the angle bisector from A to meet the circumcircle again at D. Also
construct X diametrically opposite D on the circumcircle and construct Y as the foot
of the perpendicular from I onto AC. We calculate the power of I with respect to the
circumcircle (see section 5.3), which is equal to OI2 � R2 and also to � AI � ID. From
section 6.6, we have ID � CD.

�A

�
B

�
C

�

D

�I � O

�X

�Y
α
2

α
2

Now we note that
�
DXC

� � � �
IAY , and so AI

IY
� XD
DC

�� AI � ID � 2rR. Since OI2 �

R2 � � AI � ID, it follows that OI2 � R
�
R � 2r

�
as required.

Euler’s Theorem provides a measure of the distance between the incentre and
circumcentre. However it is most often invoked as Euler’s Inequality.

Exercise 6.9 ( �). Let r be the inradius and R the circumradius of ABC and let p be
the inradius of the orthic triangle of triangle ABC. Prove that

p
R

�
1 �

1
3

�

1
� r
R

� 2
�

6.8 Area

There are numerous formulae for the area of a triangle, and in many cases things can
be discovered by equating them.

Theorem 6.6 (Heron’s Formula).

K � �
sxyz
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Proof. This is probably the ugliest proof in this booklet. Here goes:

16K2 � 4
�
absinγ

� 2

� 4a2b2 �
1 � cos2 γ

�

� 4a2b2

�

1 �



a2 �

b2 � c2

2ab

� 2
�

� 4a2b2 �
�
a2 �

b2 � c2 � 2

�
�
2ab � a2 � b2 �

c2 � �
2ab

�
a2 �

b2 � c2 �

�
�

c2 �
�
a � b

� 2
� � �

a
�
b

� 2 � c2
�

�
�
c � a

�
b

� �
c

�
a � b

� �
a

�
b

�
c

� �
a

�
b � c

�

� 16sxyz �

Theorem 6.7 (Triangle area formulae).

K � 1
2aha

� 1
2bhb

� 1
2chc (6.6)

� 1
2absinγ � 1

2bcsinα � 1
2casinβ (6.7)

� abc
4R

(6.8)

� 2R2 sinαsinβsinγ (6.9)
� 1
2R

�
acosα �

bcosβ �
ccosγ

�
(6.10)

� R
�
acosβcosγ �

bcosγcosα �
ccosαcosβ

�
(6.11)

� rs (6.12)
� rax � rby � rcz (6.13)
� �

sxyz (Heron’s Formula) (6.14)

Proof. The first is the standard formula for the area of a triangle. The second is really
the same formula, since sinγ � ha

b . The third is obtained using the extended sine
rule (sinγ � c

2R). The fourth is similarly obtained using the extended sine rule by
converting all side lengths to sines.

Equation 6.9 is obtained by adding the areas of the isosceles triangles
�
BOC,

�
COA and

�
AOB. The base of

�
BOC is a and

�
BOC � 2

�
BAC � 2α, so the

height is OC cosα � Rcosα. Adding up the areas gives the result.
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a
�

2

Rcosα

�A

�

B
�

C
�

�O

The following equation is obtained from 6.9 by replacing a by bcosγ �
ccosβ

and similarly for b and c.
Equation 6.12 is obtained similarly to 6.9, but using I instead of O. The three

triangles all have height r, so the area is 1
2

�
ra

�
rb

�
rc

�
� rs. Equation 6.13 uses

the excentre Ia instead; in this case one adds triangles ABIa and ACIa and subtracts
triangle BCIa.

Heron’s Formula was covered earlier.

Exercise 6.10. An equilateral triangle has sides of length 4
�
3. A point Q is located

inside the triangle so that its perpendicular distances from two sides of the triangle
are 1 and 2. What is the perpendicular distance to the third side?

Exercise 6.11. Prove that
1
r

� 1
ra

� 1
rb

� 1
rc

�

There is one area more formula that is used with coordinate geometry.

Theorem 6.8. If one vertex of a triangle is at the origin and the other two are at
�
x1 � y1

�
and

�
x2 � y2

�
, then

K � 1
2

�
x1y2

� x2y1
�

�

If the absolute value operator is removed, one gets a formula for directed area1.

Proof. The proof below uses trigonometry. It is also possible to compute the area of
the triangle by starting with a rectangle that bounds it, and subtracting right triangles.
However, that approach requires several cases to be considered.

1The sign is used in computer graphics to determine whether three points are wound clockwise or anti-clockwise.
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θφ�
A

�B
�
ccosθ � csinθ

�

�C
�
bcosφ � bsinφ

�

Assume without loss of generality that C makes a larger angle from the x-axis than B
(swapping B and C simply negates the term inside the absolute value). Then

�
x1 � y1

�
�

�
ccosθ � csinθ

�
,

�
x2 � y2

�
�

�
bcosφ � bsinφ

�
and the area is

1
2bcsinα � 1

2bcsin
�
φ � θ

�

� 1
2bc

�
sinφcosθ � cosθsinφ

� 1
2

�
x1y2

� x2y1
�

�

6.9 Inequalities

Inequalities in triangles are often best solved by first expressing all the quantities in
terms of as few variables as possible (ideally, only two or three) and then using in-
equality techniques discussed in Inequalities for the Olympiad Enthusiast to finish the
problem algebraically. Jensen’s Inequality is particularly powerful when combined
with trigonometric functions.

Theorem 6.9 (Jensen’s Inequality). A function f is said to be convex on an interval
�
a � b

�
if f

�
x

� �
f

�
y

�

2
�
f

� x �
y

2

�
for all x � y � �

a � b
�
. If f is convex2 on

�
a � b

�
then for any

x1 � x2 � � � � � xn in
�
a � b

�
we have

f



x1

�
� � �

�
xn

n

�

� f
�
x1

� �
� � �

�
f

�
xn

�

n
�

The statement also holds if all inequality signs are reversed, in which case the func-
tion is termed concave.

2If you are familiar with calculus, a convex function is one that satisfies f
� �	

x

 �

0 for all x
� 

a � b
�
.
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Proof. Refer to page 18 of Inequalities for the Olympiad Enthusiast, by Graeme
West.

Exercise 6.12. If α � β � γ are the angles of a triangle, then show that sinα �
sinβ �

sinγ � 3
�
3

2
�

One thing to keep in mind is the triangle inequality: if you reduce the problem
to an inequality in a, b and c then it is possible (although not necessarily the case)
that you will need to use the fact that the sum of any two is greater than the third. A
technique that sometimes simplifies this to substituting a � x

�
y, b � y

�
z, c � z

�
x

in which case the triangle inequality is equivalent to x � y � z
� 0. In some circles this

has become known as the Ravi Substitution, after a Canadian IMO contestant (and
later coach) Ravi Vakil. Although he did not invent the technique, he successfully
applied it to an IMO problem.

There are a few other useful inequalities that are specific to triangles. The first is
Euler’s Inequality, mentioned above. The others are listed below.

Theorem 6.10. In a triangle ABC,

3
�
3

2
R

�
s s2 �

3
�
3K K

�
3

�
3r2

�

In each case, equality occurs iff
�
ABC is equilateral.

Proof. We first prove that 3
�
3

2 R
�
s. From the extended sine rule, a

2R
� sinα and so

s
R

� sinα �
sinβ �

sinγ

�
3sin



α � β � γ

3

�

(Jensen’s Inequality)

� 3sin60
�

� 3
�
3

2
�

For the remaining inequalities, we express everything in terms of x, y and z. Thus

s2 � s3
�

2 �
s

�
�

s
�
x

�
y

�
z

�
3

� �
27sxyz (AM-GM)

� 3
�
3K (Heron’s Formula) �
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K � r2s2

K
� 3

�
3r2K
K

(from the previous step)

� 3
�
3r2

�

Theorem 6.11 (Erdős-Mordell). Let P be a point inside triangle
�
ABC, and let the

feet of the perpendiculars from P to BC � CA � AB be D � E � F respectively. Then

AP
�
BP

�
CP

�
2

�
DP

�
EP

�
FP

�
�

Proof. Extend AP to meet the circumcircle of
�
ABC at A

�

. Let
�
BAP � θ and

�
CAP � φ. Note that FP � APsinθ and EP � APsinφ, so EP

FP
� sin φ

sin θ
� CA

�

BA
� . Also

note that a � AA
�

� b � BA
� �

c � CA
�

(from Ptolemy’s Theorem in the cyclic quadrilateral
ACA

�

B), so AA
�

� b
a

� BA
� � c

a
� CA

�

. Now

AP � FP
sinθ

� FP � 2R
BA

� (Extended Sine Rule)

� FP � AA
�

BA
� (AA

�

is less than the diameter)

� FP
�
b � BA

� �
c � CA

� �

a � BA
�

� b
a

� FP
� c
a

�

CA
�

BA
� � FP

� b
a

� FP
� c
a

� EP �

�A

�
B

�
C

�

D

�E
�F

�
P

�

A
�
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Now we can establish similar inequalities for BP and CP, and adding these gives

PA
�
PB

�
PC

�



b
c

� c
b

�

PD
�

� c
a

� a
c

�

PE
�



a
b

� b
a

�

PF

�
2

�
PD

�
PE

�
PF

�
� (AM-GM)

Exercise 6.13. Let ABC be a triangle and P be an interior point in ABC. Show that
at least one of the angles PAB, PBC, PCA is less than or equal to 30 degrees.

7 Transformations

A very powerful idea in geometry is that of a transformation. A transformation maps
every point in space to some other point in space. Structures like lines or circles
are transformed by applying the transformation to every point on them. They do not
necessary maintain their shapes; in fact there is a transformation (inversion) which
generally maps lines to circles! Each transformation will preserve certain properties
of a diagram, and by translating the properties of the original into the transformed
diagram one can obtain new information. Here a diagram is really just a set of points.

7.1 Affine transformations

The transformations we discuss here are all affine. That means that straight lines
are mapped to straight lines, and lengths are scaled uniformly. The transformations
presented here all preserve angles as well. These transformations can in fact be built
up by combining reflections and scale changes, although this is not necessarily the
best way to think about them.

7.2 Translations, rotations and reflections

The simplest transformation is a translation: every point simply moves a constant
distance in a constant direction; this is like picking up a piece of paper and moving it,
without rotating it. Rotations rotate all the points by some angle around a particular
point; this is like sticking a pin in a piece of paper and then turning it. Reflections
take all points and reflect them in a particular line; this is like picking up the piece
of paper and putting it down upside-down (the paper would of course need to be thin
enough for the diagram to be seen through the back).
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While these are all quite straightforward, they can also be very powerful because
they preserve so much. They are also closely related, as shown by the next problem.

Exercise 7.1. In each of the following, show that the transformations exist using a
concrete construction.

(a) Show that any rotation or translation can be expressed as the combination of a
pair of reflections, or vice versa.

(b) Show that two rotations, two translations or a translation and rotation can always
be combined to produce a single translation or rotation.

(c) Show that any combination of translations, reflections and rotations yields either
a rotation, a translation, or a translation followed by a reflection.

Exercise 7.2. In acute-angled triangle ABC, a point P is given on side BC. Show how
to find Q on CA and R on AB such that

�
PQR has the minimum perimeter.

Exercise 7.3 ( �). The point O is situated inside the parallelogram ABCD so that
�
AOB

� �
COD � 180

�
. Prove that

�
OBC � �

ODC.

7.3 Homothetisms

So far we have discussed only rigid transforms, namely those that can be illustrated
with a piece of paper. We now move on to scaling. Imagine drawing a diagram on a
new T-shirt, and then letting the T-shirt shrink in the wash. Assume the ink doesn’t
run and that the T-shirt doesn’t warp, you will have the same diagram, only smaller.
All the angles and so on will be the same, although lengths will not.

A homothetism is a fancy name for scaling. One chooses a centre (sometimes
called the “centre of similitude”) and a scale factor. Every point is then kept in the
same direction relative to the centre, but its distance from the centre is scaled by the
scale factor. Like translations, homothetisms preserve orientation, angles, and ratios
of lengths. However, lengths are scaled by the scale factor. The result below allows
one to find the centre of a homothetism.

Theorem 7.1. Let S and T be two similar figures which have the same orientation,
but are not the same size. Then there is a homothetism that maps S to T .

Proof. Pick a point A in S and its corresponding point A
�

in T . Now pick a second
point B in S, not on AA

�

, and its corresponding point in B3. Now if AA
�

and BB
�

are

3If no such B exists, then make some arbitrary construction in S and the corresponding construction in T to produce
such a B.

27

parallel then AA
�

B
�

B would be a parallelogram, making AB � A
�

B
�

. But we assumed
that S and T are of different sizes, which would give a contradiction. Hence AA

�

and BB
�

meet at a point, which we will call P. Now consider the homothetism with
centre of similitude P and scale factor A

�
P

AP . It will clearly map A to A
�

; will it map
B to B

�

? Yes, because
�
ABP

� � � �
A

�

B
�

P by parallel lines. If we can show that this
homothetism maps the rest of S to T then we are done.

�A

�

B

�A
�

�

B
�

� P

Let C be some arbitrary point in S. We aim to show that the homothetism maps
C to its corresponding point C

�

in T . If C is A or B then we are done. If C lies on AB
then C is uniquely defined by AC

BC (with directed line segments). But homothetisms

preserve ratios of lengths, and A
�
C
�

B
�
C
� � AC

BC so C is mapped to C
�

. If C does not lie on
AB then C is uniquely defined by the directed angles

�
BAC and

�
ABC, and angles

are preserved by homothetisms.

The construction also suggests how the centre of similitude can be found in prac-
tice: take two pairs of corresponding points and find the intersection of the lines
between them. For example, any two circles of different sizes satisfy the require-
ments, so a homothetism can be found between them. The points of tangency of the
common tangent are corresponding points, since they have the same orientation rel-
ative to the centre. Hence the centre of similitude is the intersection of the common
tangents.

What happens if we have non-overlapping circles, and use the other pair of com-
mon tangents? It turns out that this point is also a centre of similitude. However,
this homothetism has a negative scale factor, which means that points are “sucked”
through the centre and pushed out the other side. This also rotates the figure by 180

�
,

although for a circle this isn’t visible. The theorem above in fact applies to situations
where the two figures have orientations that are out by 180

�
, in which case a negative

scale factor is used. In this case the figures may even by the same size (since the scale
factor is � 1, not 1).

Exercise 7.4. Let ABC be a triangle. Use a homothetism to show that

(a) the medians of
�
ABC are concurrent;
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(b) the point of concurrency (the centroid) divides the medians in a 2 : 1 ratio;

(c) the orthocentre H, the centroid G and the circumcentre O are collinear, with
HG : GO � 2 : 1 (this line is known as the Euler line). Assume that H and O exist
(i.e. that the defining lines are concurrent).

Exercise 7.5 ( �). On a plane let C be a circle, L be a line tangent to the circle C and
M be a point on L. Find the locus of all points P with the following property: there
exist two points Q � R on L such that M is the midpoint of QR and C is the inscribed
circle of triangle PQR.

7.4 Spiral similarities

An even more general transformation than a homothetism is a spiral similarity. A
spiral similarity combines the effects of a homothetism and a rotation: the plane is
not only scaled around a centre P by some factor r, it is also rotated around P by an
angle θ. A spiral similarity preserves pretty much the same things as homothetisms
i.e. ratio of lengths and angles. However, corresponding lines are no longer parallel,
but meet each other at an angle of θ. As for homothetisms, there is a result that makes
it possible to find a spiral similarity given two similar figures.

Theorem 7.2. Let S and T be two sets of points that are similar but have either
different orientation or different size (or both). Then there is a spiral similarity that
maps S to T .

Proof. In the special case that S and T have the same orientation, there exists a ho-
mothetism, which is just a special case of a spiral similarity. So we assume that S and
T have different orientations. We also include the case where S and T are oriented
180

�
apart in the special case, as this is a homothetism with negative scale factor.

Choose two arbitrary points A and B in S, and their corresponding points A
�

and
B

�

in T . Let P be the intersection of AB and A
�

B
�

. Construct the circumcircles of
�
AA

�

P and
�
BB

�

P, and let their second point of intersection be Q (Q exists because
of the assumptions).
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�
A

�B

�A
�

�B
�

�P

�

Q

Now
�
AQA

� � �
APA

� � BPB
� � BQB

�

,
�
AA

�

Q � �
APQ � �

BPQ � �
BB

�

Q and
similarly

�
A

�

AQ � B
�

BQ. It follows that triangles AA
�

Q and BB
�

Q are directly sim-
ilar4. Now consider the spiral similarity with centre Q, angle AQA

�

and scale factor
A
�
Q

AQ . It will map A to A
�

by construction, and from the similar triangles it will map
B to B

�

. We can now proceed to show that S is mapped to T , as was done in the
corresponding theorem for homothetisms.

Exercise 7.6. Squares are constructed outwards on the sides of triangle ABC. Let P,
Q and R be the centres of the squares opposite A, B and C respectively. Prove that
AP and QR are equal and perpendicular.

8 Miscellaneous problems

These problems all draw on the techniques in this book, but do not fit well into any
particular section. They are mostly very challenging problems designed to give you
practice.

Exercise 8.1 ( �). ABCD is a square. P is a point inside the square with
�
ABP �

�
BAP � 15

�
. Show that

�
CDP is equilateral.

Exercise 8.2 ( �). A 6m tall statue stands on a pedestal, so that the foot of the statue
is 2m above your head height. Determine how far from the statue you should stand
so that it appears as large as possible in your vision.5

4Two triangles are directly similar if they are similar and have the same clockwise/anti-clockwise orientation.
5In other words, maximise the angle formed by the foot of the statue, your head and the top of the statue.
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Exercise 8.3 ( �). In an acute angled triangle ABC the interior bisector of
�
A inter-

sects BC at L and the circumcircle of
�
ABC again at N. From point L perpendiculars

are drawn to AB and AC, the feet of these perpendiculars being K and M respectively.
Prove that the quadrilateral AKNM and the triangle ABC have equal areas.

Exercise 8.4 ( �). ABC is a triangle. The internal bisector of the angle A meets the
circumcircle again at P. Q and R are similarly defined relative to B and C. Prove that

AP
�
BQ

�
CR � AB

�
BC

�
CA �

Exercise 8.5 ( �). A circle of radius r is inscribed in a triangle ABC with area K. The
points of tangency with BC, CA and AC are X, Y and Z respectively. AX intersects
the circle again in X

�

. Prove that BC � AX � XX
�

� 4rK.

Exercise 8.6 ( �). A semicircle is drawn on one side of a straight line
�

. C and D
are points on the semicircle. The tangents at C and D meet

�

again at B and A
respectively, with the centre of the semicircle between them. Let E be the point of
intersection of AC and BD, and F the point on

�

such that EF is perpendicular to
�

.
Prove that EF bisects

�
CFD.

Exercise 8.7 ( �). In
�
ABC, let D and E be points on the side BC such that

�
BAD �

�
CAE. If M and N are, respectively, the points of tangency with BC of the incircles

of
�
ABD and

�
ACE, show that

1
MB

� 1
MD

� 1
NC

� 1
NE

.

Exercise 8.8 ( �). Let P be a point inside
�
ABC such that

�
APB �

�
ACB � �

APC �
�
ABC �

Let D, E be the incentres of
�
APB �

�
APC respectively. Show that AP, BD and CE

meet at a point.

9 Solutions

3.1 Using classical geometry to solve this problem would result in an enormous
number of different cases. However, directed angles hide all of that, and the
result appears with a few lines of basic calculation:

�
AZC � �

AZO
� �

OZC
� �

AXO
� �

OYC (concyclic points)
� �

BXO
� �

OY B (collinear points)
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� �
BXO

� �
OXB (concyclic points)

� �
BXO �

�
BXO (directed angles)

� 0
�

�

and hence A, Z and C are collinear.

3.2 Note that PC subtends right angles at D and E , and hence is the diameter of a
circle passing through P, C, D and E . Similarly, P � A � F and E are concyclic.

�A

�
B

� C�

D

�
E

�F

�P

�
DEF � �

DEP
� �

PEF
� �

DCP
� �

PAF
� �

BCP �
�
BAP �

It follows that
�
DEF � 0

� �� �
BCP � �

BAP. The first is a condition
for D � E � F to be collinear and the second is a condition for P to lie on the
circumcircle of

�
ABC.

4.1 cot
�
A

�
B

�
� cot AcotB � 1

cotA
�
cotB can be shown by substituting tanθ � 1

cosθ into tan
�
A

�

B
�

� tanA
�
tanB

1 �tanA tanB and simplifying. The expressions for sinAsinB and similar ex-
pressions can be proved simply by expanding the right hand side and cancelling
terms. The final three equations are derived by making suitable substitutions
into the previous three.

4.2 We first derive a general formula for tan
�
A

�
B

�
C

�
.

tan
�
A

�
B

�
C

�
� tan

� �
A

�
B

� �
C

�

� tan
�
A

�
B

� �
tanC

1 � tan
�
A

�
B

�
tanC

�
tanA

�
tanB

1 � tanA tanB
�
tanC

1 � tanA
�
tanB

1 � tanA tanB
� tanC
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� tanA
�
tanB

� �
1 � tanA tanB

�
tanC

�
1 � tanA tanB

�
�

�
tanA

�
tanB

�
tanC

� tanA
�
tanB

�
tanC � tanA tanB tanC

1 � tanA tanB � tanB tanC � tanC tanA
�

However, we know that tan
�
A

�
B

�
C

�
� tan180

� � 0, so the numerator must
be 0. The result follows.

4.3 Suppose that P lies on the arc BC, as in the diagram. Then OQPR is cyclic
with diameter OP, so applying the extended sine rule in

�
OQR gives QR �

OPsin
�
BOC. Now

�
BOC is fixed and OP is the radius of the circle, also

fixed. So QR is fixed if P lies on the arc BC. But sin
�
BOC � sin

�
COA �

sin
�
DOA � sin

�
DOB, so QR is constant wherever on the circle P may be.

�A

�
B

�C

�
D

�O � P
�

Q

�R

5.1 This problem is fairly straight-forward as it consists almost entirely of angle
chasing. The only difficulty is that P can lie anywhere on the circumcircle,
which could give rise to multiple cases. We can get around this with directed
angles. This diagram is thus only for reference. D and F are the feet of the
altitudes from A and C in

�
ABC.
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�
A

�B

� C

�D

�

E

�F
�H

�

P

�Q

� R

�
X

(a) Firstly notice that since PAQB and PARC are parallelograms, BQ and CR
are parallel and equal (and in the same direction), so BCRQ is also a par-
allelogram. It follows that RQ

�

CB and hence AH
�
RQ. This shows that

H lies on one altitude of
�
AQR. If RX

�
AQ then it would lie on another

altitude we would be done.

Note that B, D, H and F are concyclic. Thus

�
AHC � �

DHF (opposite angles)
� �

DBF (D, H, F , B concyclic)
� �

CBA
� �

CPA (A, B, C, P concyclic)
� �

ARC (AP
�

RC � AR
�

PC)

and therefore A, H, R and C are concyclic. Thus

�
AXR � �

XAR
� �

ARX
� �

XAB
� �

BAC
� �

CAR
� �

ARH
� �

QAB
� �

FAC
� �

ACP
� �

ACH
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� �
PBA

� �
ABP

� �
FAC

� �
ACF

� �
AFC

� 90
�

and the result follows.

(b) This is just more angle chasing, using the fact that H, X , A and E are
concyclic (because of the right angles).

�
AEX � �

AHX
� �

AHR
� �

ACR
� �

PAC
� �

PAE

from which it follows that XE
�

AP.

(Proposed for IMO 1996)

5.2 We use Ptolemy’s Inequality:

AP � BC
�
BP � CA

�
CP � AB�� AP

�
BP

�
CP (since AP � BP � CP) �

Equality occurs if and only if ABPC is a cyclic quadrilateral.

5.3 Construct KL through E parallel to BC, with K and L on AB and AC respec-
tively.

�A

�

B
�

C
�

D

�E

�

F

�
P

�M

�N
�K � L
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From similar triangles AKE and ABD, we have KE � BD � AE
AD . Similarly, EL �

DC � AE
AD . But BD � DC, so KE � EL and hence AE is a median of

�
AKL.

Also, PE
�
KL (since KL

�

BC), so M, E and N are the pedal points of P in
triangle AKL. The Simpson Line theorem states that M, E and N are collinear if
and only if P lies on the circumcircle of

�
AKL. But the perpendicular bisector

of KL and the angle bisector of
�
A both meet the circumcircle at the middle of

the arc KL, so P lies on the angle bisector of
�
A.

(Crux Mathematicorum, 1990, 293)

5.4 If P is one of the midpoints, then the lengths of the tangents from P to the two
circles are equal. Since these lengths are the square roots of the power of P
with respect to these two circles, P must lie on the radical axis. Since this is
true for four midpoints, they are collinear because the radical axis is a straight
line.

5.5 Call the given circles Γ1 and Γ2, and construct a third circle Γ3 which intersects
both Γ1 and Γ2. The position of Γ3 is arbitrary, provided that the centres of the
three circles are not collinear. The radical axes of

�
Γ1 � Γ2

�
and

�
Γ1 � Γ3

�
can

be found by drawing lines through the intersection points. The intersection of
these two lines is the radical centre of the three circles. The desired radical axis
now passes through the radical centre and is perpendicular to the line of centres
of Γ1 and Γ2, which can easily be constructed.

5.6 We use directed angles and line segments, since P may lie either inside or
outside of the segment XY . It is also possible (but more tedious) to do the
proof with two cases. The diagram below shows the one case.

�A �
B

�
C

� D

�
X

�Y

�
Z

�M

�N
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Label the circle with diameter AC as Γ1, and the circle with diameter BD as Γ2.
The point Z lies on the radical axis of the two circles, so it has equal power with
respect to both. In particular, ZM � ZC � ZN � ZB, which prove that M � N � B and
C are concyclic. Call this circle Γ3. Now

�
MND � �

MNB
� �

BND
� �

MCB
�
90

�

� �
MCA

� �
AMC

� �
�
CAM

� �
MAD �

This proves that M � N � A and D are also concyclic; call this circle Γ4. Finally,
we note that AM � DN and XY are the three radical axes formed between the
circles Γ1 � Γ2 and Γ4. These lines are not all parallel (AM

�

XY would require
that P � Z), so they must coincide at the radical centre of the circles.

(IMO 1995, problem 1)

6.1 Let D, E and F be the points of tangency of the incircle with BC � CA � AB and
let the excircle be tangent to the same sides at P, S and T respectively. Then
from common tangents,

2ES � 2FT � ES
�
FT

� EC
�
CS

�
FB

�
BT

� DC
�
CP

�
DB

�
BP

� 2BC �

�A

�B � C�D

�E
�F

�

P
� S

� T

Hence ES � FT � BC � y
�
z. Now BP � BT � FT � BF �

�
y

�
z

�
� y � z.

Similarly, CP � y.
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6.2 Since the altitude AF passes through H and BC
�
AF , it follows that BC and

FM coincide. Let H
�

be the reflection of H in BC. H
�

is known to lie on the cir-
cumcircle of

�
ABC, so R � H

�

O �
�
232 �

142. Hence BM �
�
H

�
O2 � 72 �

26 and BC � 2BM � 52.

23
7

7
� H

�

�A

�
B

�
C

�
F

�H

�

M

� O

6.3 Clearly, A0, B0 and C0 are in fact IA, IB and IC, and we will refer to them as
such.

(i) We will show that
� �

IIAC
�

� 2
� �

IA1C
�
(refer to the diagram on page 15,

where D is A1). Results for five other pairs of triangles follow similarly,
and adding them all up gives the desired result. Triangles IIAC and IA1C
have a common height, and bases IIA and IA1. But these bases are the
radius and diameter of the circle with diameter IIA, so the result follows.

(ii) It suffices to show that
�
AC1BA1CB1

�
is at least twice

�
ABC

�
, which is

equivalent to showing that
� �

BCA1
� � � �

CAB1
� � � �

ABC1
� � � �

ABC
�
.

Let A2, B2 and C2 be the reflections of H in BC, CA and AB. These
points are known to lie on the circumcircle. When comparing the areas
of triangles BCA1 and BCA2, we note that they share a common base but
the height of

�
BCA1 is greater than or equal to that of

�
BCA2. Hence

� �
BCA1

� � � �
CAB1

� � � �
ABC1

� � � �
BCA2

� � � �
CAB2

� � � �
ABC2

�

�
� �

BCH
� � � �

CAH
� � � �

ABH
�

�
� �

ABC
�

�

(IMO 1989 Question 2)
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6.4 Let BD � m and DC � n. Then m
�
n � a and n

m
� a � m

m
� b

c . Hence

BD � m � a

1
� b
c

� ac
b

�
c

�

6.5 If r � 1, then AP � BP and so the locus is simply the perpendicular bisector.
Otherwise suppose r

� 1 (the situation is symmetric if r
� 1). Pick an arbitrary

P not on AB which satisfies the condition. Let the internal and external angle
bisectors of

�
APB meet AB at D1 and D2 respectively. Then by the angle

bisector theorem, AD1
BD1

� AD2
BD2

� r. D1 and D2 are the only two points on AB
that satisfy this, so they are fixed independent of P. Also,

�
D1PD2

� 90
�
, so

P must lie on the circle with diameter D1D2.

�

A
�

B
�

D1

�

D2

�P

Conversely, suppose P lies on this circle. If P also lies on AB then P � D1 or
P � D2, both of which satisfy the conditions. Otherwise let the internal and
external bisectors of

�
PAB meet AB at E1 and E2 respectively. If AP

BP
� AE1

BE1

�

AE2
BE2

�
r then E1 lies closer to A than D1 and E2 lies further from A than D2. But

this means that
�
E1PE2

� 90
�
, which is a contradiction. Similarly, if AP

BP
�
r

then
�
E1PE2

� 90
�
, again a contradiction. Thus AP

BP
� r, and this circle is

precisely the locus of P.

This circle is known as an Apollonius circle.

6.6 Apply Menelaus to
�
ACD cut by line BGE:

AG
GD

�

DB
BC

�

CE
EA

� � 1 � (9.1)
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�A

�

B
�

C
�

D

� E

�F

�G

Similarly, one can apply it to
�
ABD cut by BGE:

AG
GD

�

DC
CB

�

BF
FA

� � 1 � (9.2)

Finally, dividing (9.1) by (9.2) and doing some re-arranging (while being care-
ful with the sign conventions) gives Ceva’s Theorem.

6.7 Without loss of generality, let BQ
�
CQ, giving the diagram below:

�A

�

B

�C

�

E

�F

�
Q

� O

Suppose OQ
�
EF . Then EBQO and FCOQ are cyclic quadrilaterals, so

�
BEO � 180

�
�

�
BQO � �

CQO � �
CFO. But BO � CO, so

�
BEO �

�
CFO. This gives EO � FO, making

�
EOF isosceles. But OQ

�
EF , so

EQ � QF .

Now suppose that QE � QF . Apply Menelaus to triangle AEF , cut by line
BQC:

1 � EQ
QF

�

FC
CA

�

AB
BE

� FC
BE

�

Hence CF � BE . Also, BO � CO, so
�
BEO � �

CFO and hence EO � FO.
Then

�
EOF is isosceles with EQ � QF , so OQ

�
EF .

(IMO 1994 question 2)
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6.8 Construct D on the extension of AC such that
�
ABD � �

ABC. Note that AB is
then an angle bisector of

�
BDC. Also,

�
BDA � 2

�
ABC �

�
ABD � �

ABD,
so triangle ABD is isosceles and AD � c. From the angle bisector theorem (or
from

�
ABC

� � � �
BDC), we find that AD � ac

b .

a

b

c

c

� A

�

B
�

C

�D

From Stewart’s Theorem, we get

�
b

�
c

� �
c2 �

bc
�

�
� ac
b

� 2
� b

�
a2c

�� �
b

�
c

� 2bc � a2c2 �
a2bc

�� b
�
b

�
c

�
� a2 �

as required.

6.9 Let the orthic triangle be A
�

B
�

C
�

. We use Euler’s Inequality twice, once on
�
ABC and once on

�
A

�

B
�

C
�

. The vertices of the orthic triangle lie on the
nine-point circle, so the circumradius of

�
A

�

B
�

C
�

is R
	
2. Thus

p
R

� 1
2

�

p
R

	
2

� 1
4

� 1 �
1
3

�

3
2

2

�
1 �

1
3

�

1
� r
R

� 2
�

(Proposed at IMO 1993)
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6.10 The height of the triangle is 6, so the area is 12
�
3. Let the required length be

x, and consider the area as the sum of the areas of the triangles formed by Q
and the vertices.

1
2

x

� �

�

�

�

�

� Q

The total area is thus 2
�
3

�
1

�
2

�
x

�
. Solving the equation 12

�
3 � 2

�
3

�
1

�

2
�
x

�
gives x � 3.

6.11 We know that s � x
�
y

�
z. Divide through by K, recalling that K � rs � rax �

rby � rcz.

6.12 We first check that sin is concave on
�
0

�
� 180

��
:

sinx
�
siny

2
� sin



x

�
y

2

�

� cos



x � y

2

�
�
sin



x

�
y

2

�

�

Thus

sinα �
sinβ �

sinγ �
3sin



α � β � γ

3

�

� 3sin60
� � 3

�
3

2
�

6.13 Suppose for a contradiction that these angles are all strictly greater than 30
�
.

Drop perpendiculars from P onto BC � CA � AB to meet at D � E � F respectively.
Then 2PF

�
PA, 2PD

�
PB and 2PE

�
PC. But then PA

�
PB

�
PC

� 2
�
PD

�

PE
�
PF

�
, which contradicts the Erdős-Mordell Theorem.

(IMO 1991, question 5)

7.1 (a) When combining two reflections, there are two cases.
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� A

� A
�

�A
� �

� A

� A
�

�A
� �

xx �

�
�

P

In the diagrams above, the first reflection maps A to A
�

, and the second
maps A

�

to A
� �

.

(i) The lines of reflection are parallel, separated by a distance d. As
can be seen from the diagram, the combination of the reflections is
a translation by 2d, perpendicular to the lines of reflection (the di-
rection depends on the order in which the reflections are performed.
Conversely, any translation can be expressed as the combination of
two parallel reflections, suitably oriented, and with separation equal
to half the distance of the translation.

(ii) The lines of reflection are not parallel, and intersect at some point
P with an angle of θ. From the diagram, it is now clear that any
other point is rotated by an angle of 2θ around P, with the direction
depending on the order of the rotations. Conversely, any rotation
can be expressed as the combination of two reflections which pass
through the centre of the rotation, and with an angle between them of
half the rotation angle.

(b) Two translations trivially produce another translation, whose displacement
is the vector sum of the original displacements. When one or both of the
transformations is a rotation, express the transformations as pairs of reflec-
tions. We showed in part (a) that there is some freedom in the choice of
reflections. We will have four reflections which are applied in order, say
b2b1a2a1.6 We can always choose the reflections such that a2 and b1 are
the same. Identical reflections cancel out, so we are left with a1b2 which
from (a) is equivalent to a rotation or translation.

(c) We can transform all the rotations and translations into pairs of reflections,
using part (a). We can then pair off these reflections and convert them back
into translations and rotations, possibly leaving one reflection at the end.
Now part (b) shows that we can reduce the sequence of translations and

6We write sequence of transformations from right to left. This is because they are functions, so applying ab to a point
P actually means a

	
b

	
P


 

, with b being applied first.
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rotations to just one, which may be followed by a reflection. It remains to
show that a rotation followed by a reflection is equivalent to a translation
followed by a reflection. We do this by appending two identical (and hence
cancelling) reflections to the sequence, at an angle we will choose in a
moment. The sequence will now appear as ccb

�
r2r1

�
where r2r1 is the

rotation, and c is the newly added reflection. We choose c so that cb forms
a rotation with angle exactly opposite to the angle of r2r1. Now

�
cb

� �
r2r1

�

is the combination of two rotations that forms some translation, say T (it is
a translation, not a rotation, because of the choice of angle). Thus the entire
sequence is equivalent to cT i.e. a translation followed by a reflection.

7.2 Reflect P in CA to obtain P1 and reflect P in AB to obtain P2. Now PQ
�
QR

�

RP � P1Q
�
QR

�
RP2. This sum will clearly be smallest when P1, Q, R and P2

lie in a straight line. So choose Q and R to be the intersections of P1P2 with CA
and AB.

�A

�

B
�

C
�

P

� P1

�P2

�Q�R

7.3 Having two supplementary angles vertically opposite each other is not very
helpful. It would be more useful if we could get the angles to be either adjacent
(to create a straight line) or opposite angles of a quadrilateral (to make it cyclic).
One way to do this is to “pick up” triangle DOC and place DC on top of AB.

�A � B

�
C

�
D

�
O

�O
�
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More formally, construct O
�

outside ABCD such that
�
AO

�

B � �
DOC. Then

�
AO

�

B
� �

AOB � 180
�
, so AO

�

BO is cyclic. Also, OO
�

BC is a parallelogram
because O

�

B and OC are equal and parallel. Thus
�
OBC � �

BOO
�

� �
BAO

�
�

�
ODC.

(Canadian Mathematical Olympiad 1997)

7.4 (a) Let D � E and F be the midpoints of BC � CA and AB respectively. From the
Midpoint Theorem,

�
DEF

� � � �
ABC and is half the size. It is also oriented

180
�
relative to

�
ABC. Thus there is a homothetism that maps

�
ABC to

�
DEF , with scale factor � 1

2 . The centre of similitude must lie on AD � BE
and CF , and hence these lines are concurrent.

�

A
�

B

�C

�D�E

�

F

�O
�

G
�
H

(b) The homothetism maps AG to DG with scale factor � 1
2 , so AG : GD � 2 : 1.

The result follows similarly for the other two medians.

(c) The line DO is perpendicular to BC, and hence also to EF . Similarly
EO

�
FD and FO

�
DE , so O is the orthocentre of

�
DEF . Since the

homothetism maps
�
ABC to

�
DEF , it will also map H to O. This proves

the collinearity, and the scale follows as in the previous section.
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7.5 Start with an arbitrary pair
�
Q � R

�
for which P exists, and construct the excircle

C2 of
�
PQR opposite P (see diagram).

�Q � R

�P

�M

�
T

�

N
�

K

�X1

�X2

�Y1

�Y2

The incircle and excircle of
�
PQR must be homothetic, and P is the centre

of the homothetism. Now let K be the point of tangency of C with L, and let
T be the point diametrically opposite K. The corresponding point to T on C2
must also be vertically above the centre in the diagram, i.e. it is N. But the line
through corresponding points must pass through the centre of the homothetism,
so P lies on NT .

From the solution to problem 6.1 (page 37), we have QK � RN, from which
it follows that N and K are symmetrically placed about M. But K and M are
fixed, so N must be fixed too.

We have now established that any solution P must lie on NT . It is also clear
that P must lie strictly beyond T . Conversely, suppose P

�

is some point on NT
beyond T . Let L

�

be a line through P
�

and parallel to L, and consider moving
a point P along L

�

, finding Q and R on L such that C is the incircle of
�
PQR.

When P moves far to the left, the midpoint of QR will be far to the right, and
vice versa. Since the midpoint shifts continuously, there is at least one point
where it is M. We have shown above that this P must be the intersection of NT
with L

�

, namely P
�

, and hence P
�

satisfies the desired properties. Therefore the
locus is the portion of NT that lies strictly beyond T .

(IMO 1992, question 4)
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7.6 Consider the spiral similarity with centre A, rotating clockwise (in the diagram)
by 45

�
and scaling by

�
2. It will map Q to C and R to X . Now consider the

spiral similarity with centre B that rotates anti-clockwise by 45
�
and scales by�

2. It will map A to X and P to C. These two similarities thus map AP and QR
to the same line. They both scale by the same amount (

�
2) and the difference

of their angles is 90
�
, so AP and QR must be equal and perpendicular.

�A

�
B

�
C

�

P

� Q�
R

�X

8.1 Construct Q inside the square with
�
CDQ equilateral. We aim to show that

P � Q.

�
A

�
B

�C�D

� Q

Now
�
QDC � 60

�
, so

�
QDA � 30

�
. But QD � AD, so

�
AQD is isosceles

and thus
�
DAQ � 75

�
. This makes

�
BAQ � 15

�
, and similarly

�
ABQ � 15

�
.

But then triangles ABP and ABQ have two common angles and a common side,
so they are congruent. Both P and Q lie on the same side of AB (the inside
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of the square), so P and Q must be the same. Triangle CDQ is equilateral by
construction, so

�
CDP is equilateral.

8.2 Construct a circle of radius 5m, with centre 5m above your head height and 4m
from the statue. This circle will pass through the head and foot of the statue.

�

�

�

�

If your head lies on the circle you will have some constant viewing angle θ;
with your head inside the circle the angle is larger, and with your head outside
the circle it is smaller. But the circle is tangent to the line representing head-
height, so the best angle is when your head is at this point of tangency. So you
should stand 4m from the statue.

8.3 Firstly note that
�
ALK � �

ALM. Hence AKLM is a kite and so KM
�
AL;

thus
�
AKNM

�
� 1

2KM � AN. Since ABNC is cyclic,
�
ABL

� � � �
ANC and hence

AN � AL � AB � AC. Also, AL is the diameter of the circumcircle of
�
AKM, so

KM
AL

� sinα. Substituting these into the above gives

�
AKNM

�
� 1
2

�

KM � AB � AC
AL

� 1
2

� AB � AC � sinα
�

� �
ABC

�

xx

�A

�
B

�
C

�
L

�

N

�K

�M
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(IMO 1987 Question 2)

8.4 Let D be the point where the angle bisector from A cuts BC.

� �

�A

�
B

�
C

�

P

� D

Since
�
BAD � �

PAC and
�
DBA � �

CPA we have
�
BAD

� � � �
PAC. Thus

c
BD

� AP
PC . From exercise 6.4 we have BD � ac

b
�
c . It follows that AP � b

�
c

a
� PC.

But PB � PC and so from the triangle inequality, 2PC
�
BC �� PC

� a
2 .

Therefore AP
� b

�
c

2 .

Similarly BQ � c
�
a

2 and CR � a
�
b

2 . Adding these inequalities gives the desired
result.

(Australian Mathematics Olympiad 1985)

8.5 Firstly note that AX � AX
�

is the power of A with respect to the incircle, so it is
equal to AZ2 � x2. Thus a � AX � XX

�
� a � AX2 � ax2.

�A

�B � C�

X

� Y

�Z

�X
�

We can calculate a � AX2 using Stewart’s Theorem:

BC
�
AX2 �

BX � XC
�

� AC2 � BX
�
AB2 � CX
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a
�
AX2 �

yz
�

� b2y
�
c2z

a � AX2 �
�
x

�
z

� 2y
� �

x
�
y

� 2z �
�
y

�
z

�
yz

� x2y
�
2xyz

�
z2y

�
x2z

�
2xyz

�
y2z � y2z � z2y

� x2 �
y

�
z

� �
4xyz

� ax2 �
4xyz �

Now we can calculate a � AX2 � ax2

a � AX2 � ax2 � 4xyz

� 4
s

� sxyz

� 4
s

� K2

� 4
s

� rsK

� 4rK as desired.

(Arbelos May 1987)

8.6 This is a good example of a problem that becomes much easier with a good di-
agram (the diagram below is intentionally skewed). If AD and BC are extended
to meet at P, then it appears that P, E and F are collinear. This would be a
useful thing to know, so we attempt to prove it.

�

A
�

B

�C
�D

�P

�

T
�

O

Let T be the foot of the perpendicular from P to AB and let O be the centre of
the semicircle.

�
OCB

� � � �
PT B, so CB

T B
� BO

BP . Similarly DA
TA

� AO
AP . We want

to prove that PT , AC and BD are concurrent, which by the converse of Ceva’s
Theorem would be true if

PC
CB

�

BT
TA

�

AD
DP

� 1
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Firstly, PC � PD (equal tangents to the semicircle), and we can substitute the
ratios found above to change this to BP

BO
� AO
AP

� 1. However, this is true by the
angle bisector theorem (PD is an angle bisector because

�
PCO � �

PDO). It
follows that E lies on the altitude from A, and F � T .

Now notice that PO subtends right angles at C, D and F , so PCFD is a cyclic
quad. Thus

�
DFP � �

DCP and
�
CFP � �

CDP, and since PC � PD it fol-
lows that

�
DFP � �

CFP. Therefore EF bisects
�
CFD.

(Proposed at IMO 1994)

8.7 The key to this problem is noticing that you can treat triangles ABD and ACE
as completely separate, and ignore

�
ABC. The only things these two triangles

have in common is the angle at A and the height from A. Let these quantities
be θ and h respectively. If we can express 1

MB
� 1
MD in terms of θ and h then

we are done.

Let us rename D to C so that we are working with
�
ABC and can use the usual

notation.

1
MB

� 1
MC

� 1
y

� 1
z

� y
�
z

yz
� a
yz

� ahrsx
hrsxyz

� ahrsx
hrK2 (Heron’s Formula)

� 2K2x
hrK2

� x
r

�

2
h

� 2
h

cot
θ
2

�

(Proposed at IMO 1993)

8.8 Construct Q so that
�
BAQ � �

PAC and
�
ABQ � �

APC. Then by construction,
�
ABQ

� � � �
APC. Now in

�
APB and

�
ACQ:

�
�
BAP � �

BAC �
�
PAC � �

QAC
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� AC
AQ

� AC
AC� AB

�

AP
� AP
AB

�

Hence
�
APB

� � � �
ACQ. Now

�
CBQ � �

APC �
�
ABC � �

APB �
�
ACB �

�
BCQ, so

�
BCQ is isosceles. It follows that

AC
PC

� AQ
BQ

� AQ
CQ

� AB
BP

�

�A

�B � C

�

P

�
Q

�D
�E

Now from the angle bisector theorem, BD will cut AP in the ratio AB : BP, and
CE will cut AP in the ratio AC : CP. Since these ratios are the same, the three
lines will be concurrent.

(IMO 1996 Question 2)

10 Recommended further reading

Geometric inequalities often require techniques from the world of standard inequal-
ities. Inequalities for the Olympiad Enthusiast, by Graeme West (part of the same
series as this booklet) provides some good material in this field.

This booklet is well under 100 pages, and as such cannot do proper justice to the
rich field of classical geometry. A highly regarded and very readable reference is
Geometry Revisited, by Coxeter and Greitzer.

A good source of problems are the yearbooks of the South African training pro-
gram for the IMO (South Africa and the nth IMO, for n

�
35). These contain problems
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vervolg hiervan

Dit laatste komt door het volgende:

Stelling 1.4. (stellingen van Carnot)

• Zij O het omcentrum van 4ABC dan geldt dat de som van de afstanden van O tot de
middens van de zijden van de driehoek gelijk is aan R+r waarbij een afstand afgetrokken
werd als ze buiten de driehoek ligt.

• X,Y, Z zijn punten op de rechten AB,AC,BC van driehoek 4ABC.
De loodlijnen uit deze 3 punten zijn concurrent a.e.s.a.

|BX|2 + |AY |2 + |ZC|2 = |BZ|2 + |CY |2 + |AX|2

• Een triviale stelling van Carnot: A,B,X, Y zijn 4 punten, dan geldt dat AB ⊥ XY
⇔ AX2 −BX2 = AY 2 −BY 2.

extra eigenschap In ∆ABC tekent men de voetpuntsdriehoek DEF van P . Er geldt dat

• Opp(DEF) =
1

4

∣∣∣∣∣1−
|OP |2
R2

∣∣∣∣∣ · Opp(ABC).

Stelling 1.5. (stellingen van Miquel bij vierhoeken)

M is het Miquel punt tov AB,CD,AC,BD wanneer geldt dat X het snijpunt is van de
omgeschreven cirkels , van de snijpunten van ieder triplet lijnen. Stel P = AC ∩ BD,R =
AB∩CD. Er geldt met de stelling dat M op de omgeschreven cirkels van ABP,CPD,RBD en
RAC ligt. De hoogtelijnen van de 4 driehoeken liggen op een rechte (gevolg van de steinerlijn).
De 4 omcentra zijn cyclisch met het Miquelpunt
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1.1 vervollediging naamgeving

• de trilineaire pool en poollijn van een driehoek: zie bovenste tekening op vorige blad-
zijde. In een driehoek ABC is er een punt P (de trilineaire pool), AP,BP,CP snijden
hun overstaande zijden in A”, B”, C” dan snijden A′B′, AB en analoog op een rechte,
deze noemen we de trilineaire poollijn ( bestaat door de stelling van Desargues)

• ceviaandriehoek:

4A”B”C” is de ceviaandriehoek van 4ABC tov het punt P als

A”, B”, C” gelijk zijn aan AP ∪BC,BP ∪AC en CP ∪AB resp.

• anticeviaandriehoek, als 4A′B′C ′ is de anticeviaandriehoek van 4ABC tov het punt
P als

A op de rechte B′C ′ ligt en zo ook C ′, A,′B collineair zijn en C ∈ A′B′

P = AA′ ∪BB′ ∪ CC ′

4ABC de ceviaandriehoek is van A′B′C ′ tov P

Er geldt dat (AA”PA′) = −1 en de cyclische viertallen zijn harmonisch (zie sectie
deelverhoudingen).

Enkele anticeviaandriehoeken van belangrijke punten:

I : excentral triangle

Z: anticomplementaire driehoek

symmediaanpunt: raaklijnendriehoek (driehoek gevormd door de raaklijnen)

• circumceviaandriehoek / circumceviantriangle

In 4ABC is P een inwendig punt (geen hoekpunt), dan is A′B′C ′ de circumceviaan-
driehoek als A′ = PA ∪ τ en analoog met τ de omgescreven cirkel. Als O = P is A′ de
antipode / diametraal overgesteld punt van A.

• contactdriehoek (intouchtriangle) voetpuntsdriehoek van I

• aanraakdriehoek: driehoek gevormd door de raakpunten van 4ABC met zijn aange-
schreven cirkels

• isogonaal verwant: 2 punten zijn isogonaal verwant als de rechten door deze punten en
een hoekpunt van de driehoek, symmetrisch zijn tov de bissectrice uit dat hoekpunt en
dit voor ieder hoekpunt (hun overeenkomstige cevianen/ hoektransversalen hebben een
omgekeerde verhouding tot de zijden)

De voetpuntsdriehoeken van 2 isogonaal verwante punten liggen op 1 cirkel, waarvan
het middelpunt het midden is van die 2 punten.

• isotomisch verwantschap: 2 punten zijn isotomischl verwant als de loodlijnen op een
zijde van de driehoek, symmetrisch zijn tov de middelloodlijnen uit dat hoekpunt en
dit voor iedere zijde (vb. het punt van Gergonne en het punt van Nagel zijn isotomisch
verwant)
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• symmedianen: De symmedianen zijn de spiegelbeelden van de zwaartelijnen in de bis-
sectrices =de rechten isogonaal verwant met de zwaartelijnen

• Het punt van Lemoine in een driehoek is het snijpunt van de symmedianen. Het punt
van Lemoine is het punt dat de som van de kwadraten van de afstanden tot de zijden
van de driehoek minimaliseert en is isogonaal verwant met het zwaartepunt.

• het punt van Nagel: X,Y, Z zijn de raakpunten van Ia, Ib, Ic met de driehoek 4ABC,
dan is het Na het punt van concurrenctie van AX,BY en CZ.

• rechte van Nagel: Na, I, S (punt van Spieker dat het incentrum is van de middendrie-
hoek) en Z liggen op deze rechte in de verhouding |NS| : |SZ| : |ZI| = 3 : 1 : 2.

• rechte van Euler: H,N,Z,O op 1 rechte liggen in die volgorde en de verhoudingen zijn:
HN : NZ : ZO = 3 : 1 : 2

• het inwendig punt van Gergonne: het snijpunt van de lijnen door de hoekpunten en de
raakpunten van de ingeschreven cirkel aan de overstaande zijden. uitwendig punt van
Gergonne: snijpunten van cevianen door de raakpunten van 1 aangeschreven cirkel

• de Longchapspunt L: het hoogtepunt v.d. anticomplementaire driehoek en is het punt
zodat O het midden is van HL.

• Bevanpunt: omcentrum V van de aangeschreven driehoek/excentral triangle IaIbIc (4
gevormd door aancentra)

voetpuntsdriehoek van V is de aanraakdriehoek

V = het midden van [NaL] en ligt er samen met V ′ (isogonaal verwante punt van
V ′)

O is het midden van [IV ]

het spiekerpunt is het midden van [HV ]

• Het punt van Fermat:

In het geval dat de grootste hoek van de driehoek kleiner is dan 120, is de totale
afstand van het punt naar de drie hoekpunten minimaal.

De binnenste hoeken, gevormd door dit punt: ∠AFB,∠BFC,∠CFA zijn alle gelijk
aan 120◦

De omschreven cirkels van de drie gelijkzijdige driehoeken van de constructie snijden
in dit punt

De driehoek, gevormd door de centra van de drie gelijkzijdige driehoeken in de
constructie is ook een gelijkzijdige driehoek (Stelling van Napoleon) en het centrum
van de omgeschreven cirkel van deze driehoek is het punt van Fermat van de originele
driehoek

Als 4ABZ,4ACY,4BCX de uitwendige gelijkzijdige driehoeken zijn, geldt dat
F = CZ∪BY ∪AX. F is het punt waarvoor AP+BP+CP minimaal is, bewijs door Z ′

te nemen door P 60 te draaien rond A richting Z, waarna PZ ′ = AP en |ZZ ′| = |PB|.

44



• Brocardpunten: zij O1 het eerste punt van Brocard van driehoek 4ABC, dan geldt
dat ∠O1AB = ∠O1BC = ∠O1CA = γ = ∠ABO2 = ∠BCO2 = ∠CAO2 met O2 het
tweede Brocardpunt, dat het isogonaal geconjugeerd punt van O1 is.

• de Steinerlijn is de lijn l gevormd door een punt P op de omgeschreven cirkel te spie-
gelen over AB,BC,AC en gaat door H. Het is de homothetie met center in P van de
Simsonlijn met een factor 2. Het punt P wordt het antiSteinerpunt van l tov 4ABC
genoemd

gevolgen van stelling van Menelaos

Stelling 1.6. (stelling van Monge)

De stelling van Monge-d’Alembert zegt dat als we 3 cirkels hebben, de gemeenschappelijke
uitwendige raaklijnen snijden in 3 punten die collineair zijn.

Hierbij bedoelen we dat de uitwendige raaklijnen van Γi en γi+1 snijden in Pi en dat P1, P2, P3

op 1 rechte liggen.

alternatieve vorm:

Zij O1, O2, O3 de 3 centra van resp. Γ1,Γ2,Γ3, zij P1 het snijpunt van de uitwendige raaklijnen
van Γ1,Γ2 en P2, P3 de snijpunten van de inwendige raaklijnen van resp. Γ3,Γ2 en Γ1,Γ3.
Dan geldt dat P1, P2, P3 opnieuw collineair zijn.

Stelling 1.7. (transversaalstelling)

A,B,C zijn 3 punten op een lijn en P is een punt die niet op die lijn ligt: A′, B′, C ′ zijn 3
punten die liggen op AP,BP,CP resp., dan geldt er dat de punten A′, B′, C ′ collineair zijn

als en slechts als
~BC ~AP
~A′P

+
~CA ~BP
~B′P
· ~AB· ~CP

~C′P
= 0

Voorbeeld 1.8. (Darij Grinberg, uitdaging) 4ABC is een willekeurige driehoek met P, P ′

2 punten in het vlak. A′ = AP ∪ BC,B′ = BP ∪ CA en A” = AP ′ ∪ BC,B” = BP ′ ∪ CA.
Q,Q′ zijn de isogonaal geconjugeerde punten van P, P ′ resp. tov 4ABC. TB: Q ∈ A”B” ⇔
Q′ ∈ A′B′.
Stelling 1.9. (Menelaos voor vierhoeken)

Als X,Y, Z,W punten zijn op AB,BC,CD,AD van een vierhoek ABCD en deze 4 punten
liggen op een rechte, dan geldt dat

~AX
~XB
· ~BY

~Y C
· ~CZ

~ZD
· ~DW

~WA
= 1

(deze stelling geldt niet in beide richtingen)

Stelling 1.10. (Cevian Nests theorem)

4ABC is een willekeurige driehoek met A′, B′, C ′ 3 punten op BC,AC,AB resp. en A”, B”, C”
3 punten op de rechten B′C ′, A′C ′, A′B′ resp., dan gelden de volgende 3 uitspraken als er 2
waar zijn:
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• AA′, BB′, CC ′ zijn concurrent

• AA”, BB”, CC” zijn concurrent

• A′A”, B′B”, C ′C” zijn concurrent

gevolgen van stelling van Ceva

Stelling 1.11. (de goniometrische vorm van Ceva)

Zij D,E, F punten die resp. op AB,AC,BC liggen, dan geldt dat AD,BE,CF concurrent
zijn a.e.s.a.

sin(BAF )·sin(ACD)·sin(CBE)
sin(DCB)·sin(FAC)·sin(EBA) = 1

Stelling 1.12. (stelling van Jacobi)

Gegegen een driehoek 4ABC en 3 punten X,Y, Z die alle 3 inwendig zijn of alle 3 uitwendig
liggen). Als ∠ZAB = ∠Y AC,∠ZBA = ∠XBC en ∠XCB = ∠Y CA dan zijn de lijnen
AX,BY,CZ concurrent.

opmerking: ook te bewijzen met inversie en machtlijnen
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1. Construction of the symmedian.

Let ABC be a triangle and Γ its circumcircle. Let the tangent to Γ at B and C meet at D. Then
AD coincides with a symmedian of 4ABC. (The symmedian is the reflection of the median
across the angle bisector, all through the same vertex.)

M

Q

C

P

B

D

M'
F E

DD

C C

O

B

A

B

A
A

We give three proofs. The first proof is a straightforward computation using Sine Law. The
second proof uses similar triangles. The third proof uses projective geometry.

First proof. Let the reflection of AD across the angle bisector of ∠BAC meet BC at M ′. Then

BM ′

M ′C
=

AM ′ sin∠BAM ′
sin∠ABC

AM ′ sin∠CAM ′
sin∠ACB

=
sin∠BAM ′

sin∠ACD

sin∠ABD

sin∠CAM ′
=

sin∠CAD

sin∠ACD

sin∠ABD

sin∠BAD
=

CD

AD

AD

BD
= 1

Therefore, AM ′ is the median, and thus AD is the symmedian.

Second proof. Let O be the circumcenter of ABC and let ω be the circle centered at D with radius
DB. Let lines AB and AC meet ω at P and Q, respectively. Since ∠PBQ = ∠DQC +∠BAC =
1
2(∠BDC + ∠DOC) = 90◦, we see that PQ is a diameter of ω and hence passes through D.
Since ∠ABC = ∠AQP and ∠ACB = ∠APQ, we see that triangles ABC and AQP are similar.
If M is the midpoint of BC, noting that D is the midpoint of QP , the similarity implies that
∠BAM = ∠QAD, from which the result follows.

Third proof. Let the tangent of Γ at A meet line BC at E. Then E is the pole of AD (since the
polar of A is AE and the pole of D is BC). Let BC meet AD at F . Then point B,C,E, F are
harmonic. This means that line AB,AC,AE,AF are harmonic. Consider the reflections of the
four line across the angle bisector of ∠BAC. Their images must be harmonic too. It’s easy to
check that AE maps onto a line parallel to BC. Since BC must meet these four lines at harmonic
points, it follows that the reflection of AF must pass through the midpoint of BC. Therefore,
AF is a symmedian.

1Updated July 26, 2008
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Related problems:

(i) (Poland 2000) Let ABC be a triangle with AC = BC, and P a point inside the triangle such
that ∠PAB = ∠PBC. If M is the midpoint of AB, then show that ∠APM+∠BPC = 180◦.

(ii) (IMO Shortlist 2003) Three distinct points A,B,C are fixed on a line in this order. Let Γ
be a circle passing through A and C whose center does not lie on the line AC. Denote by
P the intersection of the tangents to Γ at A and C. Suppose Γ meets the segment PB at
Q. Prove that the intersection of the bisector of ∠AQC and the line AC does not depend
on the choice of Γ.

(iii) (Vietnam TST 2001) In the plane, two circles intersect at A and B, and a common tangent
intersects the circles at P and Q. Let the tangents at P and Q to the circumcircle of triangle
APQ intersect at S, and let H be the reflection of B across the line PQ. Prove that the
points A, S, and H are collinear.

(iv) (USA TST 2007) Triangle ABC is inscribed in circle ω. The tangent lines to ω at B and C
meet at T . Point S lies on ray BC such that AS ⊥ AT . Points B1 and C1 lies on ray ST
(with C1 in between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC
and AB1C1 are similar to each other.

(v) (USA 2008) Let ABC be an acute, scalene triangle, and let M , N , and P be the midpoints
of BC, CA, and AB, respectively. Let the perpendicular bisectors of AB and AC intersect
ray AM in points D and E respectively, and let lines BD and CE intersect in point F ,
inside of triangle ABC. Prove that points A, N , F , and P all lie on one circle.

2. Diameter of the incircle.

F

E

D

A

B C

Let the incircle of triangle ABC touch side BC at D, and let DE be a diameter of the circle. If
line AE meets BC at F , then BD = CF .

Proof. Consider the dilation with center A that carries the incircle to an excircle. The diameter
DE of the incircle must be mapped to the diameter of the excircle that is perpendicular to BC.
It follows that E must get mapped to the point of tangency between the excircle and BC. Since
the image of E must lie on the line AE, it must be F . That is, the excircle is tangent to BC at
F . Then, it follows easily that BD = CF .

Related problems:

(i) (IMO Shortlist 2005) In a triangle ABC satisfying AB+BC = 3AC the incircle has centre I
and touches the sides AB and BC at D and E, respectively. Let K and L be the symmetric
points of D and E with respect to I. Prove that the quadrilateral ACKL is cyclic.
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(ii) (IMO 1992) In the plane let C be a circle, ` a line tangent to the circle C, and M a point on
`. Find the locus of all points P with the following property: there exists two points Q,R
on ` such that M is the midpoint of QR and C is the inscribed circle of triangle PQR.

(iii) (USAMO 1999) Let ABCD be an isosceles trapezoid with AB ‖ CD. The inscribed circle
ω of triangle BCD meets CD at E. Let F be a point on the (internal) angle bisector of
∠DAC such that EF ⊥ CD. Let the circumscribed circle of triangle ACF meet line CD
at C and G. Prove that the triangle AFG is isosceles.

(iv) (USAMO 2001) Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the
points where ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the points
on sides BC and AC, respectively, such that CD2 = BD1 and CE2 = AE1, and denote by
P the point of intersection of segments AD2 and BE2. Circle ω intersects segment AD2 at
two points, the closer of which to the vertex A is denoted by Q. Prove that AQ = D2P .

(v) (Tournament of Towns 2003 Fall) Triangle ABC has orthocenter H, incenter I and circum-
center O. Let K be the point where the incircle touches BC. If IO is parallel to BC, then
prove that AO is parallel to HK.

(vi) (IMO 2008) Let ABCD be a convex quadrilateral with |BA| 6= |BC|. Denote the incircles
of triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω
tangent to the ray BA beyond A and to the ray BC beyond C, which is also tangent to the
lines AD and CD. Prove that the common external tangents of ω1 and ω2 intersect on ω.

3. Dude, where’s my spiral center?

Let AB and CD be two segments, and let lines AC and BD meet at X. Let the circumcircles of
ABX and CDX meet again at O. Then O is the center of the spiral similarity that carries AB
to CD.

O

D

C

X
B

A

Proof. Since ABOX and CDXO are cyclic, we have ∠OBD = ∠OAC and ∠OCA = ∠ODB. It
follows that triangles AOC and BOD are similar. The result is immediate.

Remember that spiral similarities always come in pairs: if there is a spiral similarity that carries
AB to CD, then there is one that carries AC to BD.

Related problems:

(i) (IMO Shortlist 2006) Let ABCDE be a convex pentagon such that

∠BAC = ∠CAD = ∠DAE and ∠CBA = ∠DCA = ∠EDA.

Diagonals BD and CE meet at P . Prove that line AP bisects side CD.

3
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(ii) (China 1992) Convex quadrilateral ABCD is inscribed in circle ω with center O. Diagonals
AC and BD meet at P . The circumcircles of triangles ABP and CDP meet at P and Q.
Assume that points O,P , and Q are distinct. Prove that ∠OQP = 90◦.

(iii) Let ABCD be a quadrilateral. Let diagonals AC and BD meet at P . Let O1 and O2 be
the circumcenters of APD and BPC. Let M , N and O be the midpoints of AC, BD and
O1O2. Show that O is the circumcenter of MPN .

(iv) (USAMO 2006) Let ABCD be a quadrilateral, and let E and F be points on sides AD and
BC, respectively, such that AE/ED = BF/FC. Ray FE meets rays BA and CD at S and
T , respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE pass
through a common point.

(v) (IMO 2005) Let ABCD be a given convex quadrilateral with sides BC and AD equal in
length and not parallel. Let E and F be interior points of the sides BC and AD respectively
such that BE = DF . The lines AC and BD meet at P , the lines BD and EF meet at Q,
the lines EF and AC meet at R. Consider all the triangles PQR as E and F vary. Show
that the circumcircles of these triangles have a common point other than P .

(vi) (IMO Shortlist 2002) Circles S1 and S2 intersect at points P and Q. Distinct points A1 and
B1 (not at P or Q) are selected on S1. The lines A1P and B1P meet S2 again at A2 and
B2 respectively, and the lines A1B1 and A2B2 meet at C. Prove that, as A1 and B1 vary,
the circumcentres of triangles A1A2C all lie on one fixed circle.

(vii) (USA TST 2006) In acute triangle ABC, segments AD,BE, and CF are its altitudes, and
H is its orthocenter. Circle ω, centered at O, passes through A and H and intersects sides
AB and AC again at Q and P (other than A), respectively. The circumcircle of triangle
OPQ is tangent to segment BC at R. Prove that CR/BR = ED/FD.

(viii) (IMO Shortlist 2006) Points A1, B1 and C1 are chosen on sides BC,CA, and AB of a triangle
ABC, respectively. The circumcircles of triangles AB1C1, BC1A1, and CA1B1 intersect the
circumcircle of triangle ABC again at points A2, B2, and C2, respectively (A2 6= A,B2 6= B,
and C2 6= C). Points A3, B3, and C3 are symmetric to A1, B1, C1 with respect to the
midpoints of sides BC,CA, and AB, respectively. Prove that triangles A2B2C2 and A3B3C3

are similar.

4. Arc midpoints are equidistant to vertices and in/excenters

Let ABC be a triangle, I its incenter, and IA, IB, IC its excenters. On the circumcircle of ABC,
let M be the midpoint of the arc BC not containing A and let N be the midpoint of the arc BC
containing A. Then MB = MC = MI = MIA and NB = NC = NIB = NIC .

Proof. Straightforward angle-chasing (do it yourself!). Another perspective is to consider the
circumcircle of ABC as the nine-point-circle of IAIBIC .

Related problems:

(i) (APMO 2007) Let ABC be an acute angled triangle with ∠BAC = 60◦ and AB > AC. Let I
be the incenter, and H the orthocenter of the triangle ABC. Prove that 2∠AHI = 3∠ABC.

(ii) (IMO 2006) Let ABC be a triangle with incentre I. A point P in the interior of the triangle
satisfies ∠PBA+∠PCA = ∠PBC +∠PCB. Show that AP ≥ AI, and that equality holds
if and only if P = I.
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N
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I

IC
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(iii) (Romanian TST 1996) Let ABCD be a cyclic quadrilateral and letM be the set of incenters
and excenters of the triangles BCD,CDA,DAB,ABC (16 points in total). Prove that there
are two sets K and L of four parallel lines each, such that every line in K∪L contains exactly
four points of M.

5. I is the midpoint of the touch-chord of the mixtilinear incircles

Let ABC be a triangle and I its incenter. Let Γ be the circle tangent to sides AB, AC, as well
as the circumcircle of ABC. Let Γ touch AB and AC at X and Y , respectively. Then I is the
midpoint of XY .

P

Q

I

C

B

Y

X

A

T

I

C

B

Y

X

A

Proof. Let the point of tangency between the two circles be T . Extend TX and TY to meet the
circumcircle of ABC again at P and Q respectively. Note that P and Q are the midpoint of the
arcs AB and AC. Apply Pascal’s theorem to BACPTQ and we see that X, I, Y are collinear.
Since I lies on the angle bisector of ∠XAY and AX = AY , I must be the midpoint of XY .

Related problems:

(i) (IMO 1978) In triangle ABC, AB = AC. A circle is tangent internally to the circumcircle
of triangle ABC and also to sides AB,AC at P,Q, respectively. Prove that the midpoint of
segment PQ is the center of the incircle of triangle ABC.
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(ii) Let ABC be a triangle. Circle ω is tangent to AB and AC, and internally tangent to the
circumcircle of triangle ABC. The circumcircle and ω are tangent at P . Let I be the
incircle of triangle ABC. Line PI meets the circumcircle of ABC at P and Q. Prove that
BQ = CQ.

6. More curvilinear incircles.

(A generalization of the previous lemma) Let ABC be a triangle, I its incenter and D a point on
BC. Consider the circle that is tangent to the circumcircle of ABC but is also tangent to DC,
DA at E, F respectively. Then E, F and I are collinear.
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CB

A

F
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Proof. There is a “computational” proof using Casey’s theorem2 and transversal theorem3. You
can try to work that out yourself. Here, we show a clever but difficult synthetic proof (commu-
nicated to me via Oleg Golberg).

Denote Ω the circumcircle of ABC and Γ the circle tangent tangent to the circumcircle of ABC
and lines DC, DA. Let Ω and Γ touch at K. Let M be the midpoint of arc B̂C on Ω not
containing K. Then K,E,M are collinear (think: dilation with center K carrying Γ to Ω). Also,
A, I,M are collinear, and MI = MC.

Let line EI meet Γ again at F ′. It suffices to show that AF ′ is tangent to Γ.

Note that ∠KF ′E is subtended by K̂E in Γ and ∠KAM is subtended by K̂M in Ω. Since K̂E
and K̂M are homothetic with center K, we have ∠KF ′E = ∠KAM , implying that A,K, I ′, F ′

are concyclic.

We have ∠BCM = ∠CBM = ∠CKM . So 4MCE ∼ 4MKC. Hence MC2 = ME ·MK.
Since MC = MI, we have MI2 = ME ·MK, implying that 4MIE ∼ 4MKI. Therefore,

2Casey’s theorem, also known as Generalized Ptolemy Theorem, states that if there are four circles Γ1,Γ2,Γ3,Γ4

(could be degenerated into a point) all touching a circle Γ such that their tangency points follow that order around the
circle, then

t12t34 + t23t14 = t13t24,

where t12 is the length of the common tangent between Γi and Γj (if Γi and Γj on the same side of Γ, then take their
common external tangent, else take their common internal tangent.) I think the converse is also true—if both equations
hold, then there is some circle tangent to all four circles.

3The transversal theorem is a criterion for collinearity. It states that if A,B,C are three collinear points, and P is
a point not on the line ABC, and A′, B′, C′ are arbitrary points on lines PA,PB, PC respectively, then A′, B′, C′ are
collinear if and only if

BC · AP

A′P
+ CA · BP

B′P
+ AB · CP

C′P
= 0,

where the lengths are directed. In my opinion, it’s much easier to remember the proof than to memorize this huge formula.
The simplest derivation is based on relationships between the areas of [PAB], [PA′B′], etc.
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∠KEI = ∠AIK = ∠AF ′K (since A,K, I, F ′ are concyclic). Therefore, AF ′ is tangent to Ω and
the proof is complete.

Related problems:

(i) (Bulgaria 2005) Consider two circles k1, k2 touching externally at point T . A line touches
k2 at point X and intersects k1 at points A and B. Let S be the second intersection point
of k1 with the line XT . On the arc T̂ S not containing A and B is chosen a point C . Let
CY be the tangent line to k2 with Y ∈ k2 , such that the segment CY does not intersect
the segment ST . If I = XY ∩ SC . Prove that:

(a) the points C, T, Y, I are concyclic.

(b) I is the excenter of triangle ABC with respect to the side BC.

(ii) (Sawayama-Thébault4) Let ABC be a triangle with incenter I. Let D a point on side BC.
Let P be the center of the circle that touches segments AD, DC, and the circumcircle
of ABC, and let Q be the center of the circle that touches segments AD, BD, and the
circumcircle of ABC. Show that P,Q, I are collinear.

(iii) Let P be a quadrilateral inscribed in a circle Ω, and let Q be the quadrilateral formed by
the centers of the fourcircles internally touching O and each of the two diagonals of P . Show
that the incenters of the four triangles having for sides the sides and diagonals of P form a
rectangle R inscribed in Q.

(iv) (Romania 1997) Let ABC be a triangle with circumcircle Ω, and D a point on the side BC.
Show that the circle tangent to Ω, AD and BD, and the circle tangent to Ω, AD and DC,
are tangent to each other if and only if ∠BAD = ∠CAD.

(v) (Romania TST 2006) Let ABC be an acute triangle with AB 6= AC. Let D be the foot
of the altitude from A and ω the circumcircle of the triangle. Let ω1 be the circle tangent
to AD, BD and ω. Let ω2 be the circle tangent to AD, CD and ω. Let ` be the interior
common tangent to both ω1 and ω2, different from CD. Prove that ` passes through the
midpoint of BC if and only if 2BC = AB + AC.

(vi) (AMM 10368) For each point O on diameter AB of a circle, perform the following construc-
tion. Let the perpendicular to AB at O meet the circle at point P . Inscribe circles in the
figures bounded by the circle and the lines AB and OP . Let R and S be the points at which
the two incircles to the curvilinear triangles AOP and BOP are tangent to the diameter
AB. Show that ∠RPS is independent of the position of O.

7. Concurrent lines from the incircle.

Let the incircle of ABC touch sides BC,CA,AB at D,E, F respectively. Let I be the incenter
of ABC and M be the midpoint of BC. Then the lines EF,DI and AM are concurrent.

Proof. Let lines DI and EF meet at N . Construct a line through N parallel to BC, and let it
meet sides AB and AC at P and Q, respectively. We need to show that A,N,M are collinear,
so it suffices to show that N is the midpoint of PQ. We present two ways to finish this off, one
using Simson’s line, and the other using spiral similarities.

4A bit of history: this problem was posed by French geometer Victor Thébault (1882–1960) in the American
Mathematical Monthly in 1938 (Problem 2887, 45 (1938) 482–483) and it remained unsolved until 1973. How-
ever, in 2003, Jean-Louis Ayme discovered that this problem was independently proposed and solved by instruc-
tor Y. Sawayama of the Central Military School of Tokyo in 1905! For more discussion, see Ayme’s paper at
http://forumgeom.fau.edu/FG2003volume3/FG200325.pdf
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QP
N E

F

MD

I

CB

E
F

MD

I

A

B C

A

Simson line method: Consider the triangle APQ. The projections of the point I onto the three
sides of APQ are D,N,F , which are collinear, I must lie on the circumcircle of APQ by Simson’s
theorem. But since AI is an angle bisector, PI = QI, thus PN = QN .

Spiral similarity method: Note that P,N, I, F are concyclic, so ∠EFI = ∠QPI. Similarly,
∠PQI = ∠FEI. So triangles PIQ and FIE are similar. Since FI = EI, we have PI = QI, and
thus PN = QN . (c.f. Lemma 3)

Related problems:

(i) (China 1999) In triangle ABC, AB 6= AC. Let D be the midpoint of side BC, and let E be
a point on median AD. Let F be the foot of perpendicular from E to side BC, and let P
be a point on segment EF . Let M and N be the feet of perpendiculars from P to sides AB
and AC, respectively. Prove that M,E, and N are collinear if and only if ∠BAP = ∠PAC.

(ii) (IMO Shortlist 2005) The median AM of a triangle ABC intersects its incircle ω at K and
L. The lines through K and L parallel to BC intersect ω again at X and Y . The lines AX
and AY intersect BC at P and Q. Prove that BP = CQ.

8. More circles around the incircle.

Let I be the incenter of triangle ABC, and let its incircle touch sides BC,AC,AB at D, E and
F , respectively. Let line CI meet EF at T . Then T, I,D,B, F are concyclic. Consequent results
include: ∠BTC = 90◦, and T lies on the line connecting the midpoints of AB and BC.

An easier way to remember the third part of the lemma is: for a triangle ABC, draw a midline,
an angle bisector, and a touch-chord, each generated from different vertex, then the three lines
are concurrent.

M

T
E

F

D

I

A

B C

Proof. Showing that I, T, E,B are concyclic is simply angle chasing (e.g. show that ∠BIC =
∠BFE). The second part follows from ∠BTC = ∠BTI = ∠BFI = 90◦. For the third part, note
that if M is the midpoint of BC, then M is the midpoint of an hypotenuse of the right triangle
BTC. So MT = MC. Then ∠MTC = ∠MCT = ∠ACT , so MT is parallel to AC, and so MT
is a midline of the triangle.
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Related problems:

(i) Let ABC be an acute triangle whose incircle touches sides AC and AB at E and F , respec-
tively. Let the angle bisectors of ∠ABC and ∠ACB meet EF at X and Y , respectively,
and let the midpoint of BC be Z. Show that XY Z is equilateral if and only if ∠A = 60◦.

(ii) (IMO Shortlist 2004) For a given triangle ABC, let X be a variable point on the line BC
such that C lies between B and X and the incircles of the triangles ABX and ACX intersect
at two distinct points P and Q. Prove that the line PQ passes through a point independent
of X.

(iii) Let points A and B lie on the circle Γ, and let C be a point inside the circle. Suppose that
ω is a circle tangent to segments AC,BC and Γ. Let ω touch AC and Γ at P and Q. Show
that the circumcircle of APQ passes through the incenter of ABC.

9. Reflections of the orthocenter lie on the circumcircle.

Let H be the orthocenter of triangle ABC. Let the reflection of H across the BC be X and the
reflection of H across the midpoint of BC be Y . Then X and Y both lie on the circumcircle of
ABC. Moreover, AY is a diameter of the circumcircle.

YX

H

C

A

B

Proof. Trivial. Angle chasing.

Related problems:

(i) Prove the existence of the nine-point circle. (Given a triangle, the nine-point circle is the
circle that passes through the three midpoints of sides, the three feet of altitudes, and the
three midpoints between the orthocenter and the vertices).

(ii) Let ABC be a triangle, and P a point on its circumcircle. Show that the reflections of P
across the three sides of ABC lie on a lie that passes through the orthocenter of ABC.

(iii) (IMO Shortlist 2005) Let ABC be an acute-angled triangle with AB 6= AC, let H be its
orthocentre and M the midpoint of BC. Points D on AB and E on AC are such that
AE = AD and D, H, E are collinear. Prove that HM is orthogonal to the common chord
of the circumcircles of triangles ABC and ADE.

(iv) (USA TST 2005) Let A1A2A3 be an acute triangle, and let O and H be its circumcenter and
orthocenter, respectively. For 1 ≤ i ≤ 3, points Pi and Qi lie on lines OAi and Ai+1Ai+2

(where Ai+3 = Ai), respectively, such that OPiHQi is a parallelogram. Prove that

OQ1

OP1
+

OQ2

OP2
+

OQ3

OP3
≥ 3.
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(v) (China TST quizzes 2006) Let ω be the circumcircle of triangle ABC, and let P be a point
inside the triangle. Rays AP,BP,CP meet ω at A1, B1, C1, respectively. Let A2, B2, C2 be
the images of A1, B1, C1 under reflection about the midpoints of BC,CA,AB, respectively.
Show that the orthocenter of ABC lies on the circumcircle of A2B2C2.

10. O and H are isogonal conjugates.

Let ABC be a triangle, with circumcenter O, orthocenter H, and incenter I. Then AI is the
angle bisector of ∠HAO.

Proof. Trivial.

Related problems:

(i) (Crux) Points O and H are the circumcenter and orthocenter of acute triangle ABC, re-
spectively. The perpendicular bisector of segment AH meets sides AB and AC at D and
E, respectively. Prove that ∠DOA = ∠EOA.

(ii) Show that IH = IO if and only if one of ∠A, ∠B, ∠C is 60◦.

10



A Metric Relation and its Applications

Son Hong Ta

Lemma. Let γ be a circle and let A and B be two arbitrary points on it. A circle
ρ touches γ internally at T . Denote by AE and BF the tangent lines to ρ at E and
F, respectively. Then TA

TB = AE
BF .

A metric relation and its applications

Son Hong Ta

In this note, we will present a nice metric relation in Euclidean Geometry,
and its applications.

Lemma. Let γ be a circle and A, B two arbitrary points on it. Circle ρ
touches the circle γ internally at T . Denote by AE, BF the tangent lines to ρ
in E, F , respectively. Then, we have TA

TB = AE
BF

A1

B1
F

E

T

A

B

Proof. Denote by A1, B1 the second intersections of TA, TB with ρ, respec-
tively. We know that A1B1 is parallel to AB. Therefore,

(
AE

TA1

)2

=
AA1 ·AT
A1T ·A1T

=
BB1

B1T
· BT

B1T
=

(
BF

TB1

)2

Hence, we conclude that

AE

TA1
=

BF

TB1
=⇒ AE

BF
=

TA1

TB1
=

TA

TB

This completes our proof. �

To illustrate how this lemma works, let us consider some problems.

1

Proof. Denote by A1 and B1 the second intersections of TA and TB with ρ, respec-
tively. We know that A1B1 is parallel to AB. Therefore,

(
AE

TA1

)2

=
AA1 ·AT
A1T ·A1T

=
BB1

B1T
· BT
B1T

=

(
BF

TB1

)2

.

Hence,
AE

TA1
=

BF

TB1
=⇒ AE

BF
=
TA1

TB1
=
TA

TB
,

which completes the proof. �

To illustrate how this lemma works, let us consider some examples. The following
problem was proposed by Nguyen Minh Ha, in the Vietnamese Mathematics Mag-
azine, in 2007.

Problem 1. Let Ω be the circumcircle of the triangle ABC and let D be the
tangency point of its incircle ρ(I) with the side BC. Let ω be the circle internally
tangent to Ω at T , and to BC at D. Prove that ]ATI = 90◦.
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The first interesting problem was proposed by Nguyen Minh Ha in a Viet-
namese Mathematics Magazine, in 2007.

Problem 1. Given is a triangle ABC and its circumcircle Ω. Let D be
the tangency point of its incircle ρ(I) with the side BC. A circle ω tangent
internally to Ω at T , and to BC at D. Prove that ]ATI = 90◦

T

F

E

D

I

A

B C

Solution. Let E, F the tangency points of ρ(I) with the sides CA, AB,
respectively. According to the lemma, we have

TB

TC
=

BD

CD
=

BF

CE

Therefore, triangles TBF and TCE are similar. It follows ]TFA = ]TEA, i.e.
points A, I, E, F , T lie on a circle. Hence, we obtain ]ATI = ]AFI = 90◦.
Our solution is completed. �

Problem 2. Let ABCD be a quadrilateral inscribed in a circle Ω. Circle
ω tangent to circle Ω internally at T , and to DB, AC at E, F , respectively.
let P be the intersection of EF with AB. Prove that TP is the internal angle
bisector of the angle ]ATB.

Solution. From our lemma, applied to circles Ω, ω and points A, B, we
observe that AT

BT = AF
BE , so it suffices to prove

AF

BE
=

AP

PB

Indeed, notice that ]PEB = ]AFP , and due to the law of sines, applied
to triangles APF , BPE, we have

AP

AF
=

sin]AFP

sin]APF
=

sin]BEP

sin]BPE
=

BP

BE

2

Solution. Let E and F be the tangency points of ρ(I) with sides CA and AB,
respectively. According to the lemma,

TB

TC
=
BD

CD
=
BF

CE
.

Therefore triangles TBF and TCE are similar. It follows that ]TFA = ]TEA,
hence the points A, I, E, F , T lie on the same circle. It follows that ]ATI =
]AFI = 90◦ which completes our proof. �

Problem 2. Let ABCD be a quadrilateral inscribed in a circle Ω. Let ω be a circle
internally tangent to Ω at T , and to DB and AC at E and F, respectively. Let P
be the intersection of EF and AB. Prove that TP is the internal angle bisector of
the angle ]ATB.

Solution. From our lemma, applied to circles Ω, ω and points A, B, we conclude
that AT

BT = AF
BE , thus it suffices to prove that

AF

BE
=
AP

PB
.

Indeed, notice that ]PEB = ]AFP , and from the Law of Sines, applied to triangles
APF , BPE, we have

AP

AF
=

sin]AFP
sin]APF =

sin]BEP
sin]BPE =

BP

BE
.
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P
F

T

E

A

C

D

B

Therefore AF
BE = AP

PB , this completes our solution. �

The third problem comes from the Moldova Team Selection Test in 2007,
which can be found in [2] and [3].

Problem 3. Let ABC be a triangle and Ω be its circumcircle. Circles ω
tangent to Ω internally at T , and to the sides AB, AC at P , Q, respectively.
Let S be the intersection of AT and PQ. Prove that ]SBA = ]SCA.

S

T

Q

P

A

B C

Solution. Using our lemma, we have

BP

CQ
=

BT

CT
=

sin]BCT

sin]CBT
=

sin]BAT

sin]CAT
=

PS

QS

3

Therefore AF
BE = AP

PB , which completes our solution. �

The third problem comes from the Moldovan Team Selection Test in 2007, which
can be found in [2] and [3].

Problem 3. Let ABC be a triangle and let Ω be its circumcircle. Circles ω is
internally tangent to Ω at T , and to sides AB and AC at P and Q, respectively.
Let S be the intersection of AT and PQ. Prove that ]SBA = ]SCA.

P
F

T

E

A

C

D

B

Therefore AF
BE = AP

PB , this completes our solution. �

The third problem comes from the Moldova Team Selection Test in 2007,
which can be found in [2] and [3].

Problem 3. Let ABC be a triangle and Ω be its circumcircle. Circles ω
tangent to Ω internally at T , and to the sides AB, AC at P , Q, respectively.
Let S be the intersection of AT and PQ. Prove that ]SBA = ]SCA.

S

T

Q

P

A

B C

Solution. Using our lemma, we have

BP

CQ
=

BT

CT
=

sin]BCT

sin]CBT
=

sin]BAT

sin]CAT
=

PS

QS

3

Solution. Using our lemma, we have

BP

CQ
=
BT

CT
=

sin]BCT
sin]CBT =

sin]BAT
sin]CAT =

PS

QS
.
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This fact implies that BPS and CQS are similar triangles which in turn implies
that ]SBA = ]SCA. �

Problem 4. Consider a circle (O) and a chord AB. Let circles (O1), (O2) be
internally tangent to (O) and AB and let M and N their intersection. Prove that
MN passes through the midpoint of the arc AB which does not contain M and N.

Solution. Denote by P and Q the tangency points of the circle (O1) with (O) and
AB, respectively. Let R and S be the tangency points of circle (O2) with (O) and
AB, respectively. Let T be the middle point of the arc AB which does not contain
M and N.

Therefore, triangles BPS and CQS are similar, so ]SBA = ]SCA. �

Problem 4. Let be given a circle (O) and its chord AB. Circles (O1), (O2)
internal tangent to (O) and AB, intersect each other at points M , N . Prove
that MN passes through the middle point of the arc AB, which does not con-
tain M , N of the circle (O).

Solution. Denote by P , Q the tangency points of the circle (O1) with (O)
and AB, respectively. R, S the tangency points of the circle (O2) with (O) and
AB, respectively. Let T be the middle point of the arc AB, which does not
contain M , N of the circle (O).

N

M

S
Q

T

A

B

P

R

Applying the above lemma to circles (O), (O1), points A, B and their tangent
lines AQ, BQ to (O1), we have PA

PB = QA
AB . This means PQ passes through T .

Similarly, RS also passes through T .
On the other hand, ]PQA = ]QTA+]QAT = ]PRA+]ART = ]PRS.

Therefore, points P , Q, R, S lie on a circle, the circle (O3).
Now, we have PQ is the radical axis of the circles (O1) and (O3), RS is the

radical axis of the circles (O2) and (O3), MN is the radical axis of the circles
(O1) and (O2). So, MN , PQ, RS are concurrent at the radical center of the
three circles. Hence, we deduce that MN passes through T , as the middle point
of the arc AB, which does not contain M , N of the circle (O), as desired. �

We continue with another very nice problem from MOSP Tests 2007 [4].

Problem 5. Let ABC be a triangle. Circle ω passes through points B and
C. Circle ω1 is tangent internally to ω and also to sides AB and AC at T , P ,
and Q, respectively. Let M be midpoint of arc BC (containing T ) of ω. Prove
that lines PQ, BC and MT are concurrent.

2007 Mathematical Olympiad Summer Program Tests

4

Applying the above lemma to circles (O), (O1), and points A, B along with their
tangent lines AQ, BQ to (O1) we get PA

PB = QA
AB . This means that PQ passes through

T . Similarly, RS passes through T . On the other hand, ]PQA = ]QTA+]QAT =
]PRA+]ART = ]PRS, therefore, points P , Q, R, S lie on a circle which we will
denote by (O3). We have that PQ is the radical axis of (O1) and (O3), RS is the
radical axis of (O2) and (O3), and MN is the radical axis of (O1) and (O2). So,
MN , PQ, and RS are concurrent at the radical center of the three circles. Hence,
we deduce that MN passes through T , which is the midpoint of the arc AB that
does not contain M and N. �

We continue with a problem from the MOSP Tests 2007 [4].

Problem 5. Let ABC be a triangle. Circle ω passes through points B and C.
Circle ω1 is tangent internally to ω and also to the sides AB and AC at T , P , and
Q, respectively. Let M be midpoint of arc BC (containing T ) of ω. Prove that lines
PQ, BC, and MT are concurrent.
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Solution. Let K = PQ∩BC and let K ′ = MT ∩BC. Applying Menelaos’ Theorem
in triangle ABC we obtain

KB

KB
· QC
QA
· PA
PB

= 1 =⇒ KB

KC
=
BP

CQ
.

Solution. Denote: K = PQ ∩ BC, K ′ = MT ∩ BC. Applying Menelaos’
theorem to triangle ABC, we have:

KB

KB
· QC

QA
· PA

PB
= 1 =⇒ KB

KC
=

BP

CQ

M

K
Q

T

P

A

C

B

On the other hand, M is the midpoint of arc BC (containing T ) of ω so MT

is the external bisector of angle ]BTC, therefore K′B
K′C = TB

TC . Thus, we have

to prove that BP
CQ = TB

TC , which is clearly true according to our lemma. The
problem is proved. �

Our last problem was given in [5], also discussed and proved in [6]. Now, we
will present another solution for this nice problem.

Problem 6. Circles (O1), (O2) tangent internally to the given circle (O)
at M , N , respectively. Their internal common tangents intersect (O) at four
points. Call B and C be two of them such that B, C lie on same side with respect
to O1O2. Prove that BC is parallel to a external common tangent of (O1), (O2).

Solution. Draw the internal common tangents GH, KL of (O1), (O2) such
that G, L lie on (O1) and K, H lie on (O2). Let EF be the external common
tangent of (O1), (O2) such that E, B lie on the same side with respect to O1O2.
Denote by P , Q the intersections of EF with (O). We will prove that BC is
parallel to PQ. Let’s call A be the midpoint of the arc PQ, which does not
contain M , N of the circle (O). Let AX, AY be the tangent lines at X, Y of

5

On the other hand, M is the midpoint of arc BC (containing T ) of ω so MT is the
external bisector of angle ]BTC, therefore K′B

K′C = TB
TC . Thus, we are left to prove

that BP
CQ = TB

TC , which is true according to our lemma and we are done. �

The last problem was given in [5] and is also discussed and proved in [6]. Now, we
will present another solution for this nice problem.

Problem 6. Circles (O1) and (O2) are internally tangent to a given circle (O) at M
and N, respectively. Their internal common tangents intersect (O) at four points.
Let B and C be two of them such that B and C lie on the same side with respect
to O1O2. Prove that BC is parallel to an external common tangent of (O1) and (O2).

Solution. Draw the internal common tangents GH, KL of (O1), (O2) such that
G and L lie on (O1) and K and H lie on (O2). Let EF be the external common
tangent of (O1), (O2) such that E and B lie on the same side with respect to O1O2.
Denote by P and Q the intersections of EF with (O). We will prove that BC is
parallel to PQ. Denote by A be the midpoint of the arc PQ which does not con-
tain M and N. Let AX and AY be the tangents at X and Y to the circles (O1)

Mathematical Reflections 2 (2008) 5



and (O2). In the solution to Problem 4 we have proved that A, E, and M are
collinear; A, F, and N are collinear, and the quadrilateral MEFN is cyclic. There-
fore, AX2 = AE ·AM = AF ·AN = AY 2, i.e. AX = AY (1).

the circles (O1), (O2). During the solution of the problem 4, we have also shown
that A, E, M are collinear, A, F , N are collinear and the quadrilateral MEFN
is cyclic. Therefore, AX2 = AE ·AM = AF ·AN = AY 2, i.e. AX = AY (1)

Y
X N

P Q
FE

M

A

KG

H

L

B C

Based on our lemma, we have MA
AX = MB

BG = MC
CL . On the other hand, by the

Ptolemy’s theorem, we have MA ·BC = MB ·AC = MC ·AB, therefore

AX ·BC = BG ·AC = CL ·AB

Similarly,
AY ·BC = BH ·AC + CK ·AB

So, AC · (BH −BG) = AB · (CL− CK), i.e. AC ·GH = AB ·KL, which
implies AC = AB.

Hence, we conclude that A is also the middle point of the arc BC of the
circle (O). This means BC is parallel to PQ, and our solution is completed. �
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Based on the lemma, MA
AX = MB

BG = MC
CL . On the other hand, by the Ptolemy’s

Theorem, MA ·BC = MB ·AC = MC ·AB, therefore

AX ·BC = BG ·AC = CL ·AB.

Similarly,
AY ·BC = BH ·AC + CK ·AB.

Thus AC · (BH −BG) = AB · (CL− CK), i.e. AC ·GH = AB ·KL, which implies
AC = AB. Hence, A is the midpoint of the arc BC of the circle (O). This means
that BC is parallel to PQ and our solution is complete. �
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enkele lemmata om zelf proberen te vinden

Merk op dat we bij de eerste blz. van de ”Lemmas in euclidean geometry”hebben dat OA ⊥
PQ.

• het isogonaal geconjugeerd punt van een punt op de omcirkel ligt op de oneindige rechte

• A,B,C en D,E, F zijn telkens 3 punten die op 1 rechte liggen waarbij |AB|
|BC| = |DE|

|EF | en

X,Y, Z zijn punten op resp. AD,EB,CF met AX
XD = |BY |

|EY | = CZ
ZF . Dan geldt dat X,Y, Z

op 1 rechte leggen en |AB|
|BC| = |XY |

|ZY | .

• Het anti-steinerpunt van OI tov de centrumdriehoek is het Feuerbachpunt F.

• De homothetie die de centrumdriehoek afbeeld op de hoofddriehoek beeldt Sp → I →
Na en N → O → H → L af, waarbij Sp het spiekerpunt is wordt afgebeeld op het
incentrum en analoog.

• In 4ABC zijn X,Y ∈ [AB], [AC]. H,H ′ zijn de hoogtepunten van ABC,AXY resp.
M,N zijn het midden van [BY ], [CX]. Dan geldt dat de istomisch verwante lijn van
XY ⊥ HH ′ is en //MN.

• In een driehoek ABC construeren we inwendige punten x, y ∈ [AC], [BC] resp zodat
|AX| = |BY | en zij D het midden van de boog ACB dan is XY CD steeds een koorden-
vierhoek

• We hebben 2 lijnen a, b die snijden in een punt T en een ander vast punt P. We trekken
2 lijnen x, y door P die a, b snijden in A,B,C,D. AC ∪ BD = Q, dan is de rechte QT
steeds dezelfde (dus rechten x, y veranderenderen heeft een Q′ collineair met Q,T )

• Zij ABCD een koordenvierhoek en X,Y op de rechten AC,BD zodat XY//BC dan is
ADXY cyclisch. (Reim’s stelling) Merk op dat dit ook geldt voor X,Y op AB,CD met
XY//BC dat ADXY ook cyclisch is en dit ook geldt in omgekeerde zin ( 2 koorden-
vierhoeken, rechte door snijpunten snijdt in 4 punten, waarvan er 2 bij 2 evenwijdig
zijn).

64



3 deelverhoudingen en polen

Een deelverhouding wordt als volgt gedefinieerd; P is een punt op AB, dan is de unieke

deelverhouding (ABP ) =
~PA
~PB
.

Een dubbelverhouding is het product van 2 deelverhoudingen:

A,B,C,D zijn 4 punten op een rechte, dan is de dubbelverhouding (ABCD) = (ABC)
(ABD) =

~CA∗ ~DB
~CB ~DA

. Als (ABCD) = k, dan geldt dat (ABDC) = 1
k , (ACBD) = 1− k.

Een vierstraal = 4 rechten door 1 punt. Wordt een vierstraal gesneden door een rechte, is de
dubbelverhouding constant.

In een cirkel geldt ∀P op de cirkel en A,B,C,D vaste punten op die cirkel: (PA,PB,PC, PD)
constant is voor alle P. ( Hiermee bedoelen we dat een rechte die de vierstraal snijdt in 4
punten, deze verdeelt in een constante dubbelverhouding)

Gegeven een cirkel c en punt P ; de middellijn van c door P snijdt de cirkel in A en B. Kiest
men het punt P ′ op deze lijn zodat (ABPP ′) = −1 , dan is de loodlijn p op de middellijn
door P ′ de poollijn v.h. punt P tov cirkel c. P is de pool v.d. rechte p tov c.

De volgende eigenschappen gelden:

• Als Q op de poollijn van P ligt, ligt P op de poollijn van Q

• Een willekeurige lijn door P en c snijdt die cirkel in A,B, de poollijn wordt gesneden
in X, dan geldt dat (ABXP ) = −1.

• A,B,C,D liggen op een rechte in die volgorde en (ACBD) = −1, X ligt niet op die
rechte.

Er geldt dat ∠BXD = 90◦ a.e.s.a. BX de bissectrice is van ∠AXC.
Wanneer beide gelden, volgt ook dat (ACBD) = −1, vb. heeft dat (AXIIa) = −1 met
X het snijpunt van BC met de bissectrice van ∠BAC.
gevolg:De loodlijnen uit I, Ia zijn resp. X,Y en Z is het spiegelbeeld van X tov I. Dan
geldt dat A, Y, Z op een rechte liggen.

• ABCD is een koordenvierhoek, E,K, J zijn de snijpunten van AC,BD,AB,CD en
AD,BC, dan geldt dat E de pool is van de poollijn JK en analoog J van poollijn
EK en is de poollijn van K = EJ. gevolg: O is de omcentrum van ABCD en is het
hoogtepunt van 4EJK andere stelling hiermee: laat KE AB en CD snijden in P,Q
dan geldt dat (KEPQ) = −1

• De pool van een lijn door2 polen ligt op het snijpunt van de 2 poollijnen (duaal/ geldt
in de 2 richtingen)

• De poollijnen van 3 collineaire punten zijn concurrent (opnieuw een duale stelling)

• Als AX,BY,CZ drie concurrente lijnen zijn , waarbij X,Y, Z op BC,AC,AB resp.
liggen en T = Y Z ∪BC, dan is (BXCT ) = −1
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• DEF is de orthic triangle van 4ABC (AD tot CF zijn hoogtelijnen) en D′ = EF ∪BC
, E′ = AC ∪ FD en F ′ = AB ∪DE dan geldt dat D,E, F op een rechte liggen.

Stelling 3.1. (harmonische vierhoeken)

Binnen een koordenvierhoek PQRS zijn volgende eigenschappen equivalent:

1. PQRS is harmonisch

2. |PQ||RS| = |PS||RQ|

3. PR is de P-symmedian of 4QPS

4. QS is de Q-symmedian van 4PQR

5. de raaklijnen in P,R aan de omgeschreven cirkel snijden op QS

6. de raaklijnen in Q,S aan de omgeschreven cirkel snijden op PR

7. TA, TB, TC, TD of T (abcd) is een harmonische vierstraal waarbij T een ander punt is
op de omgeschreven cirkel

De volgende PDF geeft reeds vele voorbeelden om de kracht te tonen.
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Harmonic Division and its Applications

Cosmin Pohoata

Let d be a line and A, B, C and D four points which lie in this order on it.
The four-point (ABCD) is called a harmonic division, or simply harmonic, if (using
directed lengths)

CA

CB
= −DA

DB
.

If X is a point not lying on d, then we say that pencil X(ABCD) (which consists
of the four lines XA,XB,XC,XD) is harmonic if (ABCD) is harmonic.

A B C D

In this note, we show how to use harmonic division as a tool in solving some
difficult Euclidean geometry problems.

We begin by stating two very useful lemmas without proof. The first lemma
shows one of the simplest geometric characterizations of harmonic divisions, based
on the theorems of Menelaus and Ceva.

Lemma 1. In a triangle ABC consider three points X, Y , Z on the sides BC,
CA, respective AB. If X ′ is the point of intersection of Y Z with the extended side
BC, then the four-point (BXCX ′) forms and harmonic division if and only if the
cevians AX, BY and CZ are concurrent.

X

P

Y

B X'

A

C

Z

The second lemma is a consequence of the Appollonius circle property. It can
be found in [1] followed by several interpretations.

Lemma 2. Let four points A, B, C and D, in this order, lying on d. Then, if two
of the following three propositions are true, then the third is also true:
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(1) The division (ABCD) is harmonic.

(2) XB is the internal angle bisector of ∠AXC.

(3) XB ⊥ XD.

DBA C

X

We begin our journey with a problem from the IMO 1995 Shortlist.

Problem 1. Let ABC be a triangle, and let D, E, F be the points of tangency of
the incircle of triangle ABC with the sides BC, CA and AB respectively. Let X be
in the interior of ABC such that the incircle of XBC touches XB, XC and BC in
Z, Y and D respectively. Prove that EFZY is cyclic.

T

Y
Z

E

F

A

X

B CD

Solution. Denote T = BC ∩ EF . Because of the concurency of the lines AD, BE,
CF in the Gergonne point of triangle ABC, we deduce that the division (TBDC)
is harmonic. Similarly, the lines XD, BY and CZ are concurrent in the Gergonne
point of triangle XBC, so T ∈ Y Z as a consequence of Lemma 1.

Now expressing the power of point T with respect to the incircle of triangle ABC
and the incircle of triangle XBC we have that TD2 = TE ·TF and TD2 = TZ ·TY .
So TE · TF = TZ · TY , therefore the quadrilateral EFZY is cyclic.

For our next application, we present a problem given at the Chinese IMO Team
Selection Test in 2002.

Problem 2. Let ABCD be a convex quadrilateral. Let E = AB ∩ CD, F =
AD ∩ BC, P = AC ∩ BD, and let O the foot of the perpendicular from P to the
line EF . Prove that ∠BOC = ∠AOD.
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S

T
O

P

E

F

A B

D

C

Solution. Denote S = AC ∩ EF and T = BD ∩ EF . As from Lemma 1, we
deduce that the division (ETFS) is harmonic. Furthermore, the division (APCS)
is also harmonic, due to the pencil B(ETFS). But now, the pencil E(APCS)
is harmonic, so by intersecting it with the line BD, it follows that the four-point
(BPDT ) is harmonic. Therefore, the pencil O(APCS) is harmonic and OP ⊥ OS,
thus by Lemma 2, ∠POA = ∠POC. Similarly, the pencil O(BPDT ) is harmonic
and OP ⊥ OT , thus again by Lemma 2, ∠POB = ∠POD. It follows that ∠AOD =
∠BOC.

We continue with an interesting problem proposed by Dinu Serbanescu at the
Romanian Junior Balkan MO 2007, Team Selection Test.

Problem 3. Let ABC be a right triangle with ∠A = 90◦ and let D be a point on
side AC. Denote by E the reflection of A across the line BD and F the intersection
point of CE with the perpendicular to BC at D . Prove that AF , DE and BC are
concurrent.

TY

X

Z

F
E

B C

A

D

Solution. Denote the points X = AE ∩ BD, Y = AE ∩ BC, Z = AE ∩ DF and
T = DF ∩ BC. From Lemma 1, applied to triangle AEC and for the cevians AF
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and ED, we observe that the lines AF , DE and BC are concurrent if and only if
the division (AY EZ) is harmonic.

Since the quadrilateral XY TD is cyclic, tanXY B = tanXDZ, which is equiv-
alent to XB/XY = XZ/XD. So XB ·XD = XY ·XZ.

Since triangles XAB and XDA are similar, we have that XA2 = XB ·XD, so
XA2 = XY ·XZ. Using XA = XE, we obtain that Y A

Y E = ZA
ZE , and thus the division

(AY EZ) is harmonic.

The next problem was proposed by the author and given at the Romanian IMO
Team Selection Test in 2007.

Problem 4. Let ABC be a triangle, let E,F be the tangency points of the incircle
Γ(I) to the sides AC, respectively AB, and let M be the midpoint of the side BC.
Let N = AM ∩ EF , let γ(M) be the circle of diameter BC, and let lines BI and
CI meet γ again at X and Y , respectively. Prove that

NX

NY
=

AC

AB
.

D

Z

T

X

Y

N
F

E

M

I

A

B C
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Solution. We will assume AB ≥ AC, so the solution matches a possible drawing.
Let T = EF ∩BC (for AB = AC, T = ∞), and D the tangency point of Γ to BC.

Claim 1. In the configuration described above, for X ′ = BI ∩EF , one has BX ′ ⊥
CX ′.

Proof. The fact that BI effectively intersects EF follows from ∠DFE = 1
2(∠ABC+

∠BAC) = 1
2π − 1

2∠ACB < 1
2π, and BI ⊥ DF (similarly, CI effectively intersects

EF ).
The division (TBDC) is harmonic, and triangles BFX ′ and BDX ′ are congru-

ent, therefore ∠TX ′B = ∠DX ′B, which is equivalent to BX ′ ⊥ CX ′ (similarly, for
Y ′ = CI ∩ EF , one has CY ′ ⊥ BY ′).

Claim 2. In the configuration described above, one has N = DI ∩ EF .

Proof. It is enough to prove that NI ⊥ BC. Let d be the line through A, parallel
to BC. Since the pencil A(BMC∞) is harmonic, it follows the division (FNEZ) is
harmonic, where Z = d ∩ EF . Therefore N lies on the polar of Z relative to circle
Γ, and as N ∈ EF (the polar of A), it follows that AZ is the polar of N relative
to circle Γ, hence NI ⊥ d, so NI ⊥ BC. In conclusion, since DI ⊥ BC, one has
N ∈ DI.

It follows, according to Claim 1, that X = X ′ and Y = Y ′, therefore X,Y ∈ EF .
Since the division (TBDC) is harmonic, it follows that D lies on the polar p of T
relative to circle γ. But TM ⊥ p, so BC ⊥ p, and since DI ⊥ BC, it follows that p
is, in fact, DI.

Now, according to Claim 2, it follows that D, I,N are collinear. Since DN is
the polar, it means the division (TY NX) is harmonic, thus the pencil D(TY NX)
is harmonic. But DT ⊥ DN , so DN is the angle bisector of ∠XDY , hence

NX

NY
=

DX

DY
=

sin∠DYX

sin∠DXY
.

As quadrilaterals BDIY and CDIX are cyclic (since pairs of opposing angles are
right angles), it follows that 1

2∠ABC = ∠DBI = ∠DY I = 1
2∠DYX (triangles

CDY and CEY are congruent), so ∠DYX = ∠ABC. Similarly, ∠DXY = ∠ACB.
Therefore

NX

NY
=

DX

DY
=

sin∠DYX

sin∠DXY
=

sin∠ABC

sin∠ACB
=

AC

AB
.

The following problem was posted on the MathLinks forum [2]:

Problem 5. Let ABC be a triangle and ρ(I) its incircle. D, E and F are the points
of tangency of ρ(I) with BC, CA and AB respectively. Denote M = ρ(I)∩AD, N
the intersection of the circumcircle of CDM with DF and G = CN ∩ AB. Prove
that CD = 3FG.
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T

G

X

N

MF

E

D

A

B C

Solution. Denote X = EF ∩ CG and T = EF ∩ BC. Now because the four-point
(TBDC) forms an harmonic division, so does the pencil F (TBDC) and now by
intersecting it with the line CG, we obtain that the division (XGNC) is harmonic.

According to the Menelaus theorem applied to BCG for the transversal DNF ,
we find that CD = 3GF is equivalent to CN = 3NG.

Since (XGNC) is harmonic, NC
NG = XC

XG , so it suffices to show that N is the
midpoint of CX.

Observe that ∠MEX = ∠MDF = ∠MCX, therefore the quadrilateral MECX
is cyclic, which implies that ∠MXC = ∠MEA = ∠ADE and ∠MCX = ∠ADF .

Also, ∠CMN = ∠FDB and ∠XMN = ∠XMC−∠CMN = ∠CEF−∠FDB =
∠EDC.

Using the above angle relations and the equation

NX

NC
=

sin∠MCX

sin∠MXC
· sin∠XMN

sin∠CMN
,

we obtain that NC = NX, so

sin∠FDA

sin∠EDA
=

sin∠BDF

sin∠CDE
.

On other hand, DA coincides with a symmedian of triangle DEF , so

sin∠FDA

sin∠EDA
=

FD

ED
=

sin∠DEF

sin∠DFE
=

sin∠BDF

sin∠CDE
.

Therefore, N is the midpoint of CX.
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Let ABCD be a cyclic quadrilateral and X a point on the circle. Then, the
ABCD is called harmonic if the pencil X(ABCD) is harmonic. For a list of prop-
erties regarding the harmonic quadrilateral, interested readers may can consult [1]
and [3].

The following problem was given at an IMO Team Preparation Contest, held in
Bacau, Romania, in 2006.

Problem 6. Let ABCD be a convex quadrilateral, for which denote O = AC∩BD.
If BO is a symmedian of triangle ABC and DO is a symmedian of triangle ADC,
prove that AO is a symmedian of triangle ABD.

O

S C

T

B

D

A

Solution. Denote T1 = DD ∩ AC, T2 = BB ∩ AC, T = BB ∩ DD, where DD,
respective BB represents the tangent in D to the circumcircle of ADC and the
tangent in B to the circumcircle of ABC.

Since BO is a symmedian of triangle ABC and DO is a symmedian of triangle
ADC, the divisions (AOCT1) and (AOCT2) are harmonic, so T1 = T2 = T .

Hence, BD is the polar of T1 with respect to the circumcircle of ADC and also
the polar of T2 with respect to the circumcircle of ABC. But because T1 = T2, we
deduce that the circles ABC and ADC coincide, i.e. the quadrilateral ABCD is
cyclic, and since the division (AOCT ) is harmonic, the pencil D(AOCT ) is, and by
intersecting it by the circle ABCD, it follows that the quadrilateral ABCD is also
harmonic. Then, the pencil A(ABCD) is harmonic. By intersecting it with the line
BD, we see that the division (BODS) is harmonic, where S = AA∩BD. It follows
that AO is a symmedian of triangle BAD.

The next problem was also given in an IMO Team Preparation Test, at the
IMAR Contest, held in Bucharest in 2006.

Problem 7. Let ABC be an isosceles triangle with AB = AC, and M the midpoint
of BC. Find the locus of the point P interior to the triangle for which ∠BPM +
∠CPA = π.
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S

D

M

I

A

CB

P

Solution. Denote the pointD as the intersection of the line AP with the circumcircle
of BPC and S = DP ∩BC.

Since ∠SPC = 180− ∠CPA, it follows that ∠BPS = ∠CPM .
From the Steiner theorem applied in to triangle BPC for the isogonals PS and

PM ,
SB

SC
=

PB2

PC2
.

On other hand, using Sine Law, we obtain

SB

SC
=

DB

DC
· sin∠SDB

sin∠SDC
=

DB

DC
· sin∠PCB

sin∠PBC
=

DB

DC
· PB

PC
.

Thus by the above relations, it follows that DB
DC = PB

PC , i.e. the quadrilateral
PBDC is harmonic, therefore the point A′ = BB ∩ CC lies on the line PD.

If A′ = A, then lines AB and AC are always tangent to the circle BPC, and
so the locus of P is the circle BIC, where I is the incircle of ABC. Otherwise, if
A′ 6= A, then A′ = AM ∩ PS ∩ BB ∩ CC, due to the fact that A′ ∈ PD and and
A = PS ∩AM , therefore by maintaining the condition that A′ 6= A, we obtain that
PS = AM , therefore P lies on AM .

The next problem was selected in the Senior BMO 2007 Shortlist, proposed by
the author.

Problem 8. Let ρ(O) be a circle and A a point outside it. Denote by B, C the
points where the tangents from A with respect to ρ(O) meet the circle, D the point
on ρ(O), for which O ∈ AD, X the foot of the perpendicular from B to CD, Y
the midpoint of the line segment BX and by Z the second intersection of DY with
ρ(O). Prove that ZA ⊥ ZC.
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T

Z

H

Y

X

D

C

B

O

A

Solution. Let us call H = CO ∩ ρ(O). Thus DC ⊥ DH, so DH‖BX.
Because Y is the midpoint of BX, we deduce that the division (BYX∞) is

harmonic, so also is the pencil D(BYXH) and by intersecting it with ρ(O), it
follows that the quadrilateral HBZC is harmonic. Then, the pencil C(HBZC)
is harmonic, so by intersecting it with the line HZ, it follows that the division
(A′ZTH) is harmonic, where A′ = HZ ∩ CC and T = HZ ∩BC.

So, the line CH is the polar of A′ with respect to ρ(O), but CH = BC is the
polar of A as well, so A = A′, hence the points H, Z, A are collinear, therefore
ZA ⊥ ZC.

The last problem is a generalization of a problem by Virgil Nicula [4]. The
solution covers all concepts and methods presented throughout this paper.

Z

N'

T2

S1

S2

T1

P

N

M

D

A

B

C

O
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Problem 9. Let d be a line and A, C, B, D four points in this order on it such that
the division (ACBD) is harmonic. Denote by M the midpoint of the line segment
CD. Let ω be a circle passing through A and M . Let NP be the diameter of ω
perpendicular to AM . Let lines NC,ND,PC, PD meet ω again at S1, T1, S2, T2,
respectively. Prove that B = S1T1 ∩ S2T2.

Solution. Since the four-point (ACBD) is harmonic, so is the pencil N(ACBD)
and by intersecting it with ω, it follows that the quadrilateral AS1N

′T1 is harmonic,
hence the lines S1S1, T1T1 and AN ′ are concurrent, where N ′ = NB ∩ ω.

Because the tangent in N to ω is parallel with the line AM and since M
is the midpoint of CD, the division (CMD∞) is harmonic, therefore the pencil
N(NDMC) also is, and by intersecting it with ω, it follows that the quadrilateral
NT1MS1 is harmonic, hence the lines S1S1, T1T1 and MN are concurrent.

From the above two observations, we deduce that the lines S1S1, T1T1, MN ,
AN ′ are concurrent at a point Z.

On the other hand, since the pencils B(AS1N
′T1) and B(NT1MS1) are har-

monic, by intersecting them with ω, it follows that the quadrilaterals NT3MS3 and
AS3N

′T3 harmonic, where S3 = BS1 ∩ ω and T3 = BT1 ∩ ω.
Similarly, we deduce that the lines S3S3, T3T3, MN and AN ′ are concurrent in

the same point Z.
Therefore, S3T3 is the polar of Z with respect to ω, but so is S1T1, thus S1T1 =

S3T3, so S1 = S3 and T1 = T3, therefore the points S1, B, T1 are collinear.
Similarly, the points S2, B, T2 are collinear, from which it follows that B =

S1T1 ∩ S2T2.
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Casey’s Theorem and its Applications

Luis González
Maracaibo. Venezuela

July 2011

Abstract. We present a proof of the generalized Ptolemy’s theorem, also known as Casey’s theorem
and its applications in the resolution of difficult geometry problems.

1 Casey’s Theorem.

Theorem 1. Two circles Γ1(r1) and Γ2(r2) are internally/externally tangent to a circle Γ(R) through
A,B, respetively. The length δ12 of the common external tangent of Γ1,Γ2 is given by:

δ12 =
AB

R

√
(R± r1)(R± r2)

Proof. Without loss of generality assume that r1 ≥ r2 and we suppose that Γ1 and Γ2 are internally
tangent to Γ. The remaining case will be treated analogously. A common external tangent between Γ1

and Γ2 touches Γ1,Γ2 at A1, B1 and A2 is the orthogonal projection of O2 onto O1A1. (See Figure 1).
By Pythagorean theorem for 4O1O2A2, we obtain

δ12
2 = (A1B1)

2 = (O1O2)
2 − (r1 − r2)2

Let 6 O1OO2 = λ. By cosine law for 4OO1O2, we get

(O1O2)
2 = (R− r1)2 + (R− r2)2 − 2(R− r1)(R− r2) cosλ

By cosine law for the isosceles triangle 4OAB, we get

AB2 = 2R2(1− cosλ)

1



Figure 1: Theorem 1

Eliminating cosλ and O1O2 from the three previous expressions yields

δ12
2 = (R− r1)2 + (R− r2)2 − (r1 − r2)2 − 2(R− r1)(R− r2)

(
1− AB2

2R2

)

Subsequent simplifications give

δ12 =
AB

R

√
(R− r1)(R− r2) (1)

Analogously, if Γ1,Γ2 are externally tangent to Γ, then we will get

δ12 =
AB

R

√
(R + r1)(R + r2) (2)

If Γ1 is externally tangent to Γ and Γ2 is internally tangent to Γ, then a similar reasoning gives that
the length of the common internal tangent between Γ1 and Γ2 is given by

δ12 =
AB

R

√
(R + r1)(R− r2) (3)
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Theorem 2 (Casey). Given four circles Γi, i = 1, 2, 3, 4, let δij denote the length of a common tangent
(either internal or external) between Γi and Γj. The four circles are tangent to a fith circle Γ (or line)
if and only if for appropriate choice of signs,

δ12 · δ34 ± δ13 · δ42 ± δ14 · δ23 = 0

The proof of the direct theorem is straightforward using Ptolemy’s theorem for the quadrilateral ABCD
whose vertices are the tangency points of Γ1(r1),Γ2(r2),Γ3(r3),Γ4(r4) with Γ(R). We susbtitute the
lengths of its sides and digonals in terms of the lenghts of the tangents δij, by using the formulas (1), (2)
and (3). For instance, assuming that all tangencies are external, then using (1), we get

δ12 · δ34 + δ14 · δ23 =
(
AB·CD+AD·BC

R2

)√
(R− r1)(R− r2)(R− r3)(R− r4)

δ12 · δ34 + δ14 · δ23 =
(
AC·BD

R2

)√
(R− r1)(R− r3) ·

√
(R− r2)(R− r4)

δ12 · δ34 + δ14 · δ23 = δ13 · δ42.

Casey established that this latter relation is sufficient condition for the existence of a fith circle Γ(R) tan-
gent to Γ1(r1),Γ2(r2),Γ3(r3),Γ4(r4). Interestingly, the proof of this converse is a much tougher exercise.
For a proof you may see [1].

2 Some Applications.

I) 4ABC is isosceles with legs AB = AC = L. A circle ω is tangent to BC and the arc BC of
the circumcircle of 4ABC. A tangent line from A to ω touches ω at P. Describe the locus
of P as ω varies.

Solution. We use Casey’s theorem for the circles (A), (B), (C) (with zero radii) and ω, all internally
tangent to the circumcircle of 4ABC. Thus, if ω touches BC at Q, we have:

L · CQ+ L ·BQ = AP ·BC =⇒ AP =
L(BQ+ CQ)

BC
= L

The length AP is constant, i.e. Locus of P is the circle with center A and radius AB = AC = L.

II) (O) is a circle with diameter AB and P,Q are two points on (O) lying on different
sides of AB. T is the orthogonal projection of Q onto AB. Let (O1), (O2) be the circles with
diameters TA, TB and PC, PD are the tangent segments from P to (O1), (O2), respectively.
Show that PC + PD = PQ. [2].
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Figure 2: Application II

Solution. Let δ12 denote the length of the common external tangent of (O1), (O2). We use Casey’s
theorem for the circles (O1), (O2), (P ), (Q), all internally tangent to (O).

PC ·QT + PD ·QT = PQ · δ12 =⇒ PC + PD = PQ · δ12
QT

= PQ ·
√
TA · TB
TQ

= PQ.

III) In 4ABC, let ωA, ωB, ωC be the circles tangent to BC,CA,AB through their midpoints
and the arcs BC,CA,AB of its circumcircle (not containing A,B,C). If δBC , δCA, δAB de-
note the lengths of the common external tangents between (ωB, ωC), (ωC , ωA) and (ωA, ωB),
respectively, then prove that

δBC = δCA = δAB =
a+ b+ c

4

Solution. Let δA, δB, δC denote the lengths of the tangents from A,B,C to ωA, ωB, ωC , respectively. By
Casey’s theorem for the circles (A), (B), (C), ωB, all tangent to the circumcircle of 4ABC, we get

δB · b = a · AE + c · CE =⇒ δB =
1

2
(a+ c)

Similarly, by Casey’s theorem for (A), (B), (C), ωC we’ll get δC = 1
2
(a+ b)

4



Now, by Casey’s theorem for (B), (C), ωB, ωC , we get δB · δC = δBC · a+BF ·BE =⇒

δBC =
δB · δC −BF ·BE

a
=

(a+ c)(a+ b)− bc
4a

=
a+ b+ c

4

By similar reasoning, we’ll have δCA = δAB = 1
4
(a+ b+ c).

IV) A circle K passes through the vertices B,C of 4ABC and another circle ω touches
AB,AC,K at P,Q, T, respectively. If M is the midpoint of the arc BTC of K, show that
BC,PQ,MT concur. [3]

Solution. Let R, % be the radii of K and ω, respectively. Using formula (1) of Theorem 1 for ω, (B) and
ω, (C). Both (B), (C) with zero radii and tangent to K through B,C, we obtain:

TC2 =
CQ2 ·R2

(R− %)(R− 0)
=
CQ2 ·R
R− % , TB2 =

BP 2 ·R2

(R− %)(R− 0)
=
BP 2 ·R
R− % =⇒ TB

TC
=
BP

CQ

Let PQ cut BC at U. By Menelaus’ theorem for 4ABC cut by UPQ we have

UB

UC
=
BP

AP
· AQ
CQ

=
BP

CQ
=
TB

TC

Thus, by angle bisector theorem, U is the foot of the T-external bisector TM of 4BTC.

V) If D,E, F denote the midpoints of the sides BC,CA,AB of 4ABC. Show that the incircle
(I) of 4ABC is tangent to �(DEF ). (Feuerbach theorem).

Solution. We consider the circles (D), (E), (F ) with zero radii and (I). The notation δXY stands for the
length of the external tangent between the circles (X), (Y ), then

δDE =
c

2
, δEF =

a

2
, δFD =

b

2
, δDI =

∣∣∣∣∣
b− c

2

∣∣∣∣∣ , δEI =
∣∣∣∣
a− c

2

∣∣∣∣ , δFI =

∣∣∣∣∣
b− a

2

∣∣∣∣∣

For the sake of applying the converse of Casey’s theorem, we shall verify if, for some combination of
signs + and −, we get ±c(b−a)±a(b−c)±b(a−c) = 0, which is trivial. Therefore, there exists a circle
tangent to (D), (E), (F ) and (I), i.e. (I) is internally tangent to �(DEF ). We use the same reasoning
to show that �(DEF ) is tangent to the three excircles of 4ABC.

VI) 4ABC is scalene and D,E, F are the midpoints of BC,CA,AB. The incircle (I) and
9 point circle �(DEF ) of 4ABC are internally tangent through the Feuerbach point Fe.
Show that one of the segments FeD,FeE,FeF equals the sum of the other two. [4]
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Solution. WLOG assume that b ≥ a ≥ c. Incircle (I, r) touches BC at M. Using formula (1) of Theorem
1 for (I) and (D) (with zero radius) tangent to the 9-point circle (N, R

2 ), we have:

FeD
2 =

DM2 · (R
2

)2

(R
2
− r)(R

2
− 0)

=⇒ FeD =

√
R

R− 2r
· (b− c)

2

By similar reasoning, we have the expressions

FeE =

√
R

R− 2r
· (a− c)

2
, FeF =

√
R

R− 2r
· (b− a)

2

Therefore, the addition of the latter expressions gives

FeE + FeF =

√
R

R− 2r
· b− c

2
= FeD

VII) 4ABC is a triangle with AC > AB. A circle ωA is internally tangent to its circumcircle
ω and AB,AC. S is the midpoint of the arc BC of ω, which does not contain A and ST is
the tangent segment from S to ωA. Prove that

ST

SA
=
AC − AB
AC + AB

[5]

Solution. Let M,N be the tangency points of ωA with AC,AB. By Casey’s theorem for ωA, (B), (C), (S),
all tangent to the circumcircle ω, we get

ST ·BC + CS ·BN = CM ·BS =⇒ ST ·BC = CS(CM −BN)

If U is the reflection of B across AS, then CM −BN = UC = AC − AB. Hence

ST ·BC = CS(AC − AB) (?)

By Ptolemy’s theorem for ABSC, we get SA ·BC = CS(AB + AC). Together with (?), we obtain

ST

SA
=
AC − AB
AC + AB
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VIII) Two congruent circles (S1), (S2) meet at two points. A line ` cuts (S2) at A,C and
(S1) at B,D (A,B,C,D are collinear in this order). Two distinct circles ω1, ω2 touch the line
` and the circles (S1), (S2) externally and internally respectively. If ω1, ω2 are externally
tangent, show that AB = CD. [6]

Solution. Let P ≡ ω1 ∩ ω2 and M,N be the tangency points of ω1 and ω2 with an external tangent.
Inversion with center P and power PB · PD takes (S1) and the line ` into themselves. The circles ω1

and ω2 go to two parallel lines k1 and k2 tangent to (S1) and the circle (S2) goes to another circle (S2
′)

tangent to k1, k2. Hence, (S2) is congruent to its inverse (S2
′). Further, (S2), (S2

′) are symmetrical about
P =⇒ PC · PA = PB · PD.

By Casey’s theorem for ω1, ω2, (D), (B), (S1) and ω1, ω2, (A), (C), (S2) we get:

DB =
2PB · PD
MN

, AC =
2PA · PC
MN

Since PC · PA = PB · PD =⇒ AC = BD =⇒ AB = CD.

IX) 4ABC is equilateral with side length L. Let (O, r) and (O,R) be the incircle and
circumcircle of 4ABC. P is a point on (O, r) and P1, P2, P3 are the projections of P onto BC,
CA, AB. Circles T1, T2 and T3 touch BC,CA,AB through P1, P2, P2 and (O,R) (internally),
their centers lie on different sides of BC,CA,AB with respect to A,B,C. Prove that the
sum of the lengths of the common external tangents of T1, T2 and T3 is a constant value.

Solution. Let δ1 denote the tangent segment from A to T1. By Casey’s theorem for (A), (B), (C), T1, all
tangent to (O,R), we have L · BP1 + L · CP1 = δ1 · L =⇒ δ1 = L. Similarly, we have δ2 = δ3 = L. By
Euler’s theorem for the pedal triangle 4P1P2P3 of P, we get:

[P1P2P3] =
p(P, (O))

4R2
[ABC] =

R2 − r2
4R2

[ABC] =
3

16
[ABC]

Therefore, we obtain

AP2 · AP3 +BP3 ·BP1 + CP1 · CP2 =
2

sin 60◦
([ABC]− [P1P2P3]) =

13

16
L2. (?)

By Casey’s theorem for (B), (C), T2, T3, all tangent to (O,R), we get

δ2 · δ3 = L2 = BC · δ23 + CP2 ·BP3 = L · δ23 + (L− AP1)(L− AP2)

By cyclic exchange, we have the expressions:

L2 = L · δ31 + (L−BP3)(L−BP1) , L
2 = L · δ12 + (L− CP1)(L− CP2)

7



Figure 3: Application VII

Adding the three latter equations yields

3L2 = L(δ23 + δ31 + δ12) + 3L2 − 3L2 + AP3 · AP2 +BP3 ·BP1 + CP1 · CP2

Hence, combining with (?) gives

δ23 + δ31 + δ12 = 3L− 13

16
L =

35

16
L

3 Proposed Problems.

1) Purser’s theorem: 4ABC is a triangle with circumcircle (O) and ω is a circle in its plane. AX,BY,CZ
are the tangent segments from A,B,C to ω. Show that ω is tangent to (O), if and only if

±AX ·BC ±BY · CA± CZ · AB = 0
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2) Circle ω touches the sides AB,AC of 4ABC at P,Q and its circumcircle (O). Show that the
midpoint of PQ is either the incenter of 4ABC or the A-excenter of 4ABC, according to whether
(O), ω are internally tangent or externally tangent.

3) 4ABC is A-right with circumcircle (O). Circle ΩB is tangent to the segments OB,OA and the arc
AB of (O). Circle ΩC is tangent to the segments OC,OA and the arc AC of (O). ΩB,ΩC touch OA at
P,Q, respectively. Show that:

AB

AC
=
AP

AQ

4) Gumma, 1874. We are given a cirle (O, r) in the interior of a square ABCD with side length L. Let
(Oi, ri) i = 1, 2, 3, 4 be the circles tangent to two sides of the square and (O, r) (externally). Find L as
a fuction of r1, r2, r3, r4.

5) Two parallel lines τ1, τ2 touch a circle Γ(R). Circle k1(r1) touches Γ, τ1 and a third circle k2(r2)
touches Γ, τ2, k1. We assume that all tangencies are external. Prove that R = 2

√
r1 · r2.

6)Victor Thébault. 1938. 4ABC has incircle (I, r) and circumcircle (O). D is a point on AB. Circle
Γ1(r1) touches the segments DA,DC and the arc CA of (O). Circle Γ2(r2) touches the segments DB,DC
and the arc CB of (O). If 6 ADC = ϕ, show that:

r1 · cos2
ϕ

2
+ r2 · sin2 ϕ

2
= r
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Stelling 3.2. (De vlinderstelling) Laat M het midden zijn van een koorde PQ van een cirkel
en AB en CD twee andere koorden door M. Noem X het snijpunt zijn van AD en PQ en Y
van BC en PQ. Dan is M het midden van XY .

Stelling 3.3. (stelling van Pappos)

Deze stelling luidt: Liggen A1, B1 en C1 op een rechte d1 en liggen A2, B2 en C2 op een rechte
d2 , dan zijn de punten

A : snijpunt van B1C2 en B2C1, B : snijpunt van A1C2 en A2C1 en C : snijpunt van A1B2

en A2B1 collineair.

Stelling 3.4. (stelling van Pascal)

Neem zes willekeurige punten op een cirkel of andere kegelsnede, zeg A,B,C,D,EenF. Het
snijpunt van delijnen AB en DE noemen we P , het snijpunt van BC en EF noemen we Q
en het snijpunt van CD en FA noemen we R. Dan liggen P,Q en R op 1 lijn.

Stelling 3.5. (gegeneraliseerde stelling van Pascal door Mobius) stel dat een veelhoek met
4n + 2 zijden ingeschreven wordt in een kegelsnede, en paren van tegenoverstaande zijden
worden verlengd totdat zij elkaar ontmoeten in 2n+ 1 punten, dan zal, als 2n van die punten
op 1 lijn liggen, het laatste punt ook op die lijn liggen.

Stelling 3.6. (stelling van Brianchon)

Neem een zeshoek ABCDEF van zes raaklijnen aan een kegelsnede. Dan zijn de lijnenAD,BE
en CF concurrent.

Stelling 3.7. (stelling van Desargues)

Twee driehoeken, ABC en XY Z, noemen we puntperspectief als AX,BY en CZ door 1 punt
gaan en we noemen ze lijnperspectief als de snijpunten van AB en XY , BC en Y Z, en CA
en ZX op 1 lijn liggen. De stelling van Desargues zegt dat twee driehoeken lijnperspectief zijn
dan en slechts als ze puntperspectief zijn.

Stelling 3.8. ( Poncelet) Als er een veelhoek tegelijk ingeschreven is in kegelsnede Γ1 als
kegelsnede Γ2 omschrijft, bestaan er oneindig veel zo’n veelhoeken.

Stelling 3.9. ( Taylorcirkel)

Laat D,E, F de voetpunten zijn van A,B,C en zij D1, D2 de voetpunten van de loodlijnen
uit D op AC,AB en analoog, dan gaat de Taylorcirkel door D1, D2, E1, E2, F1, F2.

Stelling 3.10. ( Morley’s driehoek)

De eerste snijpunten van de trisectrices vormen in iedere driehoek een gelijkzijdige driehoek.

Stelling 3.11. ( Steiner) de stelling van Steiner: In een 4ABC geldt dat als D,E ∈ [BC]

en AD,AE isogonaal geconjugeerd zijn, geldt dat |BD||BE|
|DC||EC| = |AB|2

|CA|2

resultaat van Steiner: de n-hoek met de grootste oppervlakte ingeschreven in een cirkel, is de
regelmatige n-hoek
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Stelling 3.12. (De cirkel van Apollonius)

Zij [AB] een lijnstuk en k een positief reel getal ongelijk aan 1. De meetkundige plaats van

alle punten P waarvoor geldt |PA|
|PB| = k is een cirkel met middelpunt op de rechte AB.

Stelling 3.13. ( Gauss) Een rechte snijdt de zijden van een driehoek in punten A′, B′, C ′ ,
dan geldt dat de middens van [AA′], [BB′], [CC ′] collineair zijn.

Stelling 3.14. ( Brahmagupta)

de formule: De oppervlakte in een vierhoek ABCD : S =
√

(s− a)(s− b)(s− c)(s− d)− abcd cos2 ∠ABC+∠BCD
2

( vooral gekend als die cosinus 0 is bij een koordenvierhoek, als generalisatie van de formule
van Heroon)

de stelling: In een koordenvierhoek ABCD waarvan de diagonalen loodrecht op elkaar staan
in S, snijdt de loodlijn van AB door S de zijde CD in het midden (simpele angle-chasing)
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4 enkele speciale dingen

inversie

Stelling 4.1. (inversie)

Bij inversie wordt een punt O als centrum gekozen en ieder punt X wordt getransformeerd
naar een punt Y zodat O,X, Y op de zelfde halfrechte liggen en |OX||OY | = c waarbij c een
reel getal is.

Indien f de inverterende functie is binnen deze meetkunde, geldt f(X) = Y, f(Y ) = X in dit
voorbeeld, wat algemeen logisch f(f(X)) = X heeft voor ieder voorwerp.

We zullen vanaf nu voor ieder punt A f(A) = A′ noteren om de eigenschappen op te sommen:

1. een lijn door O wordt op zichzelf afgebeeld

2. een cirkel door O wordt geprojecteerd op een lijn die 0 niet bevat

3. een cirkel die niet door O gaat, wordt geprojecteerd op een andere cirkel die niet door
O gaat.

4. hoeken worden behouden, maar er geldt wel dat ∠OAB = ∠OB′A′

5. lengtes van lijnstukken veranderen in volgende verhouding: |A′B′| = |c||AB|
|OA||OB|

Met deze eigenschappen kunnen problemen vanuit een heel andere hoek worden opgelost en op
een zeer ingenieuze manier opgelost worden.

Er is nog een andere transformatie om bepaalde gevallen simpeler te maken (opgelet met zo’n
transformaties te combineren!!!)

Stelling 4.2. (affiene meetkunde)

Een affiene transformatie bestaat uit een afbeelding (x, y)→ (ax+ by + c, dx+ ey + f).

Binnen de affiene meetkunde kunnen we met zo’n afbeelding 3 niet-collineaire punten vervan-
gen door 3 andere niet-collineaire punten op een manier zoals je ze zelf kiest.

De affiene transformaties behouden

• evenwijdigheid van lijnen

• collineairiteit van punten

• concurrentie van lijnen

De hoeken als ook verhouding van lijnen zijn niet strikt noodzakelijk behouden.

Deze transformatie kan dus enkel helpen wanneer 1 van de andere 3 punten te bewijzen valt.
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